alexa Cellular Transplantation as the Treatment of Alzheimers
ISSN: 2161-0460

Journal of Alzheimers Disease & Parkinsonism
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Cellular Transplantation as the Treatment of Alzheimers Diseas e in Mouse Models

Noboru Suzuki*, Jun Shimizu, Naruyoshi Fujiwara and Nagisa Arimitsu

Department of Immunology and Medicine and Department of Regenerative Medicine, St. Marianna University Graduate School of Medicine, Kawasaki, Japan

Corresponding Author:
Noboru Suzuki
Department of Immunology and Medicine and Department of Regenerative Medicine
St. Marianna University Graduate School of Medicine
2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
Tel: +81-44-977-8111
E-mail: [email protected]

Received date: March 01, 2016; Accepted date: March 07, 2016; Published date: March 14, 2016

Citation: Suzuki N, Shimizu J, Fujiwara N, Arimitsu N (2016) Cellular Transplantation as the Treatment of Alzheimer’s Disease in Mouse Models. J Alzheimers Dis Parkinsonism 6:219. doi: 10.4172/2161-0460.1000219

Copyright: © 2016 Suzuki N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Acetylcholine (Ach) and N-methyl-D-aspartate (NMDA) have been two major therapeutic targets of Alzheimer’s disease (AD) for decade. However, truly effective remedy for AD has not been successfully developed.

We previously transplanted neurons derived from human induced pluripotent stem (hiPS) cells into the hippocampus of human amyloid precursor protein transgenic AD model mice.

The cell transplantation significantly improved cognitive dysfunction in the dementia model mice. Human choline acetyl transferase (ChAT) positive cholinergic neurons located throughout the cortex of the grafted mice.

Human and mouse ChAT positive neurons and alpha7 nicotinic acetylcholine receptor (α7nAChR) positive neurons significantly increased in the cortex and hippocampus of the grafted dementia mice compared with the vehicle injected dementia mice. Human and mouse vesicular GABA transporter (VGAT) positive neurons distributed mainly in the hippocampus and, though the number was small, human VGAT positive neurons located in the cortex. In the grafted mouse cortex,

the number of GABA receptor (GABAR) positive neurons of both hiPS origin and mouse origin increased significantly compared with those in the vehicle injected mouse cortex. We suggested that positive feedback loops of neurotransmitter secretion of the cortex and hippocampus induced the characteristic distribution of the transplanted neurons. In this review, we summarized current advances in stem cell therapy for dementia model mice, especially to highlight the relationships between major neurotransmitters and host/transplanted neurons.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version