alexa Climate Change Observed over the Indo-Gangetic Basin | OMICS International| Abstract
ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Earth Sci Clim Change 2015, Vol 6(4): 271
  • DOI: 10.4172/2157-7617.1000271

Climate Change Observed over the Indo-Gangetic Basin

Chaudhuri C*, Srivastava R, Tripathi SN and Misra A
Department of Civil Engineering, Indian Institute of Technology, , Kanpur, India
*Corresponding Author : Chaudhuri C, Department of Civil Engineering, Indian Institute of Technology, Kanpur, India, Tel: +91 512 259 7755, Email: [email protected]

Received Date: Mar 26, 2015 / Accepted Date: Apr 06, 2015 / Published Date: Apr 16, 2015


We combine the seasonal mean precipitation and temperature from different datasets into a Bayesian framework using Multi-variable Bayesian Merging (MBaM) algorithm to draw a unified conclusion about their trend over the Indo-Gangetic Basin (IGB). The time series produced by the Bayesian method is combined into a Multi-variable Trend Principal Component (MTPC) setup to derive the equivalent climate change signals. These signals are then used to estimate the importance of different regional and global drivers influencing the climate change over the IGB. We show that the climate change over the IGB during pre-monsoon and monsoon seasons is very significant, during post-monsoon is less significant, and during winter season there is no indication of significant climate change. Global teleconnections are shown to have very little correlation to the climate change signal (e.g. RNino3=0.06∼0.21). On the other hand, the concentrations of greenhouse gases are found to exhibit very strong correlation (e.g RCO2 =0.94∼0.99) to the climate change signal, indicating their importance as drivers of the climate change over the IGB.

Keywords: Geographical variations; Bayesian framework; Global teleconnections

Citation: Chaudhuri C, Srivastava R, Tripathi SN, Misra A (2015) Climate Change Observed over the Indo-Gangetic Basin. J Earth Sci Clim Change 6: 271. Doi: 10.4172/2157-7617.1000271

Copyright: ©2015 Chaudhuri C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Recommended Conferences

9th World Conference on Earth Science

Beijing, China

2nd Global Summit on Earth Science and Climate Change

Prague, Czech Republic

9th World Climate Congress & Expo

Valencia, Spain
Article Usage
  • Total views: 12975
  • [From(publication date): 4-2015 - Apr 09, 2020]
  • Breakdown by view type
  • HTML page views: 9147
  • PDF downloads: 3828