Research Article
Compatible Kenaf Composites with the Rapid Manufacturing Concept of Prefab Building Components
Golnar Kiani1*, Rahinah Ibrahim2 and Kalinah31Institute of Forestry and Forest Products, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
2Faculty of Art and Architecture, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
3Institute of Forestry and Forest Products, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- *Corresponding Author:
- Golnar Kiani
Institute of Forestry and Forest Products
University Putra Malaysia, 43400
UPM Serdang, Selangor, Malaysia
Tel: +60172921213
E-mail: Golnar.kiani@gmail.com
Received Date: September 18, 2016; Accepted Date: February 06, 2017; Published Date: February 12, 2017
Citation: Kiani G, Ibrahim R, Kalinah (2017) Compatible Kenaf Composites with the Rapid Manufacturing Concept of Prefab Building Components. J Archit Eng Tech 5: 183. doi: 10.4172/2168-9717.1000183
Copyright: © 2017 Kiani G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Although many scholars have developed natural fibres as reinforcements for industrial composite materials, the available information regarding these natural fibres is insufficient. For rapid manufacturing (RM) systems and products, the main materials used are thermoplastic materials, epoxy resin, acrylonitrile butadiene styrene plastic, and polyester materials. Natural and biodegradable composites provide important environmental advantages to the automotive industry, and sustainability, eco-friendliness, and obtaining green chemistry materials are the main objectives for the development of industrial materials, products, and systems.
Biocomposites may be a viable substitute for glass fibre-reinforced composites in automotive by-products and partial building applications. However, to obtain stronger products, hybridisation of these so-called natural fibres with other fibres is necessary. Biocomposites employ polymers as matrices, resulting in lighter, stronger, and more costeffective products that, at the same time, can be melted, sintered, or solidified, similar to RM systems.
The combination of Kenaf bast fibres, a type of natural fibre, with polymer matrices results in satisfactory performance that can compete with synthetic fibre composites. However, the RM process of the fibre composites requires special attention and investigation. The present study aimed to evaluate the effect of special features of RM on Kenaf/carbon hybrid composites by simulating processing steps and assessing the resulting properties. The tensile and shear strengths of the end products were of reasonable values compared with carbon or Kenaf/polymer matrices.