alexa Dissection the Osteogenic and Angiogenic Signal Pathway
ISSN: 2153-0777

Journal of Bioengineering and Bioelectronics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Dissection the Osteogenic and Angiogenic Signal Pathways in Bone Development and Regeneration with Biochips

Jeremy M, Schon LC and Zhang Z*
Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, MD, USA
Corresponding Author : Zijun Zhang
Orthobiologic Laboratory
Medstar Union Memorial Hospital
201 E. University Parkway, Bauernschmidt Building
Room 763, Baltimore, MD 21218, USA
Tel: 410-554-2830
Fax: 410-554-2289
E-mail: [email protected]
Received March 17, 2014; Accepted March 29, 2014; Published April 03, 2014
Citation: Jeremy M, Schon LC, Zhang Z (2014) Dissection the Osteogenic and Angiogenic Signal Pathways in Bone Development and Regeneration with Biochips. J Biochips Tiss Chips 4:109. doi:10.4172/2153-0777.1000109
Copyright: © 2014 Jeremy M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and are credited.
 

Abstract

Osteogenesis is the cellular and molecular foundation of skeletal development and bone regeneration related
to fracture healing, revitalization of bone graft and therapies for osteoporosis. A hallmark of osteogenesis is the
mineralization of extracellular matrix. Because of its potential impact on developmental biology and human health,
understanding and regulation of osteogenesis are subjects of intensive study. Although significant advancements
have been made over the past decades, there are still unsolved puzzles in regulations of osteogenesis. Angiogenesis
generally refers to new blood vessels branching out from established vasculature. Besides of fundamental physiology,
angiogenesis involves in pathology, such as growth of cancer, and is essential for the repair of virtually all types of
tissues. It has long been recognized that osteogenesis and angiogenesis are coupling events during bone formation.
The classic osteogenic and angiogenic pathways intertwine and cross-talk during bone formation. To better understand
the signal pathways and coupling factors of osteogenesis and angiogenesis is critically important for enhancing bone
regeneration and tissue engineering of bone. The conventional biological models, however, have very limited capacity
of isolating angiogenic and osteogenic events from the cascade of bone regeneration, and precisely quantifying the
effects of angiogenic and osteogenic factors on bone formation at a molecular level. Biochips and tissue chips provide
a powerful tool to simulate and quantify angiogenic and osteogenic events on the chips and effectively untangle these
biologically important and clinically relevant molecular events during bone formation.

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords