alexa Distinct Function of Metal-Reducing Bacteria from Sedim
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Distinct Function of Metal-Reducing Bacteria from Sediment and Groundwater in Controlling the Arsenic Mobilization in Sedimentary Aquifer

Kuang-Liang Lu, Chen-Wuing Liu*, Vivian Hsiu-Chuan Liao and Chung-Ming Liao
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, 106, ROC
Corresponding Author : Chen-Wuing Liu
Department of Bioenvironmental Systems Engineering
National Taiwan University, Taipei, Taiwan, 106, ROC
Tel: +886223626480
Fax: +886223639557
E-mail address: [email protected]
Received: January 11, 2016; Accepted: January 22, 2016; Published: January 26, 2016
Citation: Lu KL, Liu CW, Liao VHC, Liao CM (2016) Distinct Function of Metal- Reducing Bacteria from Sediment and Groundwater in Controlling the Arsenic Mobilization in Sedimentary Aquifer. J Bioremed Biodeg 7:326. doi:10.4172/2155- 6199.1000326
Copyright: © 2016 Lu KL, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Microbially mediated dissolution of iron oxyhydroxides plays a defining role in the arsenic (As) release in most reducing environments, though the nature of this relationship remain unclear. This study aimed to evaluate the microbial processes on the enhancement or inhibition of As release as a function of bacterial enrichments from groundwater and core sediments. Two enrichment cultures of reducing bacteria (RB) used were cultivated from core sediment (RB-S) and groundwater (RB-W). The microcosm experiments were systematically conducted to assess microbially mediated reactions for the mobility of As from sediment into groundwater. From the analysis results, simultaneous bioreduction of As and Fe contributed to the initial elevation of aqueous As. Distinct distribution patterns of aqueous As and Fe between RW-S and RB-W revealed the different microbial activities. RB-W showed strong affinity for solid As, leading to high level of aqueous As. In contrast, RB-S exhibited high reducing ability toward Fe minerals, and the following formation of secondary Fe-As minerals constrained dissolved As. By amending with non-sterile groundwater, we also observed the chelating solubilization of As-contained Fe minerals, leading to the increase of As(III) and Fe(III). This comparative study illustrates the distinct function of indigenous metal-reducing microbes cultured from groundwater and sediment in liberating aquifer As and Fe. Our results provide evidence that the release and sequestration of As are closely related to specific microbial population in aquifer. The limitation of bioavailability of As and carbon source further influences the release of As to groundwater.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords