alexa Eco-friendly and Cost-effective Use of Rice Straw in the Form of Fixed Bed Column to Remove Water Pollutants | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Eco-friendly and Cost-effective Use of Rice Straw in the Form of Fixed Bed Column to Remove Water Pollutants

Baljinder Singh*, Vasundhara Thakur, Garima Bhatia, Deepika Verma and Kashmir Singh

Department of Biotechnology, Panjab University, Chandigarh, India

*Corresponding Author:
Dr. Baljinder Singh
Assistant Professor, Department of Biotechnology
Panjab University, Chandigarh-160 014, India
Tel: +911722534085
Fax: +911722541409
E-mail: [email protected] (or) [email protected]

Received Date: July 20, 2016; Accepted Date: October 28, 2016; Published Date: October 31, 2016

Citation: Singh B, Thakur V, Bhatia G, Verma D, Singh K (2016) Eco-friendly and Cost-effective Use of Rice Straw in the Form of Fixed Bed Column to Remove Water Pollutants. J Bioremediat Biodegrad 7:374. doi: 10.4172/2155-6199.1000374

Copyright: © 2016 Singh B, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

We investigated the removal of three pollutants: methylene blue (MB), phosphorus, and nickel (Ni [II]) from water by using modified rice straw powder (RSP) and fixed-bed column adsorption technique. The experiments were conducted in single and binary solutions to study the effects of initial pollutant concentration and column bed depth on adsorption. It was observed that the maximum adsorption capacity of RSP for MB, phosphorus, and Ni (II) was 21.99, 4.22, and 4 mg/g, respectively. In the MB-phosphorus binary solution, the presence of one pollutant did not affect the adsorption of other pollutants. In the Ni (II)-MB binary solution, exhaustion time significantly decreased for Ni (II) adsorption; however, it increased for MB adsorption. The adsorption mechanism was analysed by using the Adams-Bohart, Thomas, and Yoon and Nelson models for describing the column's dynamic behaviour. The results indicated that the Thomas model was very suitable for RSP column design.

Keywords

Recommended Conferences

2nd World Congress on Biopolymers & Bioplastics

Paris, France

4th Annual Congress on Soil, Plant and Water Sciences

Barcelona, Spain
Share This Page
Top