alexa Effects of Cochlear Trauma on BDNF Expression in Guinea Pig Cochlear Nucleus and Inferior Colliculus | OMICS International| Abstract
ISSN: 2161-119X

Otolaryngology: Open Access
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Otolaryngology 2013, Vol 2(2)
  • DOI: 10.4172/2161-119X.S3-006

Effects of Cochlear Trauma on BDNF Expression in Guinea Pig Cochlear Nucleus and Inferior Colliculus

Mulders WHAM1*, Rodger J2, Albertsen M2, Yates CG1 and Robertson D1
1The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, , The University of Western Australia, Australia
2School of Animal Biology, The University of Western Australia, , Australia
*Corresponding Author : Mulders WHAM, The Auditory Laboratory, School of Anatomy, Physiology and Human Biology, M311, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia, Tel: +61 (8) 6488 3321, Fax: +61 (8) 6488 1025, Email: [email protected]

Received Date: Dec 11, 2013 / Accepted Date: Jan 08, 2014 / Published Date: Jan 16, 2014

Abstract

Hearing loss caused by cochlear damage results in a variety of plastic changes in the central auditory pathways. One of these is hyperactivity, i.e. increased spontaneous firing rates, which may be involved in the generation of tinnitus, a phantom auditory sensation. The mechanism behind this synaptic plasticity is still uncertain but there may be a role for Brain Derived Neurotrophic Factor (BDNF). The expression of BDNF is activity dependent and BDNF can modulate synaptic plasticity leading to changes in excitability. In the present study we investigated the effects of two different types of cochlear trauma, mechanical and acoustic, at two different time points after trauma, on 1) peripheral hearing loss, 2) hyperactivity in inferior Colliculus (IC) and 3) BDNF protein expression in Cochlear Nucleus (CN) and IC of guinea pigs. BDNF protein expression was determined using ELISA. Although there was no significant difference in the amount of hearing loss between acoustic trauma and mechanical trauma animals, single neuron recordings showed higher levels of hyperactivity after mechanical trauma than after acoustic trauma at two weeks post-recovery from cochlear trauma.In addition, results showed an increase of BDNF levels in the ipsilateral CN and contralateral IC at 2 weeks after mechanical but not after acoustic trauma. BDNF levels recovered to sham control levels in both structures at 6 weeks after cochlear trauma even though hyperactivity remained higher compared to sham surgery animals at the same timepoint. The results suggest a possible time dependent role for BDNF in modulating synaptic plasticity and excitability after mechanical trauma to the cochlea.

Keywords: Inferior colliculus, Hearing loss, Tinnitus, Guinea pig,Compound action potential, BDNF

Citation: Mulders W, Rodger J, Albertsen M, Yates CG, Robertson D (2014) Effects of Cochlear Trauma on BDNF Expression in Guinea Pig Cochlear Nucleus and Inferior Colliculus. Otolaryngology S3:006. Doi: 10.4172/2161-119X.S3-006

Copyright: © 2014 Mulders W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Select your language of interest to view the total content in your interested language

Post Your Comment Citation
Share This Article
Recommended Conferences
Article Usage
  • Total views: 12523
  • [From(publication date): 1-2012 - Sep 25, 2020]
  • Breakdown by view type
  • HTML page views: 8667
  • PDF downloads: 3856
Top