Effects of Electrode Deformation on Carbon Steel Weld Geometry of Resistance Spot Welding | OMICS International | Abstract
ISSN: 2277-1891

International Journal of Advance Innovations, Thoughts & Ideas
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Effects of Electrode Deformation on Carbon Steel Weld Geometry of Resistance Spot Welding

Nachimani Charde*

Department of Mechanical, Material and Manufacturing Engineering, University of Nottingham, Malaysia Campus

*Corresponding Author:
Nachimani Charde
Department of Mechanical
Material and Manufacturing Engineering
University of Nottingham, Malaysia Campus
E-mail: [email protected]


The growth of the weld nugget is determined by the welding current, weld time, electrode force; and the electrode tip in resistance spot welding process. The welding current and weld time lead the heat development between base metals while the electrode pressing force and electrode tips’ ensures the molten areas are kept enclosed. As such these four process parameters are the main parameters that ensure a sound weld. In this research the electrode alignment during welding process and mushrooming effects of electrode tips are analysed using carbon steels. A pair of truncated-type electrodes was used to weld around 900 pair of test specimen. Some of welded pairs were stainless steel and it was not included here. The electrode deformation effects on the surface of carbon steels are primarily analysed in this research. It shows that the electrodes mushrooming effect are creating spaces for the molten metal to escape from the concerned areas during welding process. So the electrode deformation and alignment have simply created spaces for the expulsion; because of which the inconsistent weld surfaces were noticed. In fact the welding heat is actually affecting the electrode tips and the electrode tips itself are affecting the weld surface as well as weld nugget geometry.