alexa Evaluation of a Predictive Algorithm that Detects Aberrant Use of Opioids in an Addiction Treatment Centre | OMICS International | Abstract
ISSN: 2155-6105

Journal of Addiction Research & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Evaluation of a Predictive Algorithm that Detects Aberrant Use of Opioids in an Addiction Treatment Centre

J Ramsay Farah1, Chee Lee2, Svetlana Kantorovich2, Gregory A Smith3, Brian Meshkin2and Ashley Brenton2*

1Phoenix Health Center, Hagerstown, USA

2Proove Biosciences, Irvine CA, USA

3Red Pill Medical, Inc., USA

*Corresponding Author:
Ashley Brenton
Proove Biosciences, USA
Tel: 443-699-9951
Fax: (888) 971-4221
E-mail: [email protected]

Received date: February 21, 2017; Accepted date: March 21, 2017; Published date: March 28, 2017

Citation: Farah JR, Lee C, Kantorovich S, Smith GA, Meshkin B, et al. (2017) Evaluation of a Predictive Algorithm that Detects Aberrant Use of Opioids in an Addiction Treatment Centre. J Addict Res Ther 8:312. doi:10.4172/2155-6105.1000312

Copyright: © 2017 Farah JR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Introduction: Physicians prescribing opioids are at the front lines of the opioid abuse epidemic, battling to tip the scale between rising abuse rates and adequate pain control. This study evaluates the performance of an algorithm that incorporates genetic and non-genetic risk factors in accurately predicting patients at risk of Opioid Use Disorder (OUD). Materials and methods: In this study, we evaluated the ability of the Proove Opioid Risk (POR) algorithm to correctly identify OUD in patients at an addiction treatment facility versus healthy, non-addicted controls. The algorithm was applied to 186 participants: 94 patients at an addiction treatment facility who had documented opioid abuse and 92 healthy patients with no history of opioid use. OUD cases were diagnosed by an expert addictionologist using a predetermined set of criteria, including demonstrated tolerance to an opioid, dependence on an opioid for at least one year, and history of self-administration of an opioid on a daily basis. The performance of the POR using sensitivity, specificity, positive and negative predictive values, and area under the curve (AUC) measures was assessed in OUD cases versus the healthy controls. Results: The average POR score of patients with diagnosed OUD was significantly greater than those of the controls. The receiver operator characteristic (ROC) curve of the POR had an area under the curve (AUC) of 0.967, indicating the algorithm correctly categorizes those with OUD nearly 97% of the time. The sensitivity of the algorithm was 98% and the specificity was 100%, demonstrating that the POR is very unlikely to misclassify true positives and true negatives in this study. Conclusion: The POR reliably identified OUD in patients who were addicted to opioids, while classifying healthy controls as low risk. This can be used clinically to predict patients at high risk of OUD before prescribing opioid pain medications.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version