alexa

GET THE APP

Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
FFT and Wavelet-Based Feature Extraction for Acoustic Audio Classification. | OMICS International | Abstract
ISSN: 2277-1891

International Journal of Advance Innovations, Thoughts & Ideas
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

FFT and Wavelet-Based Feature Extraction for Acoustic Audio Classification.

A.K.M Fazlul Haque*

Department of Electronics and Telecommunication Engineering, Daffodil International University

*Corresponding Author:
A.K.M Fazlul Haque
Department of Electronics and Telecommunication Engineering
Daffodil International University
E-mail: [email protected]

Abstract

Speech is one of the vital signals of acoustic classification. Speech recognition is also significant and very well known of audio processing. Speech contains very important frequency information of human being. The features of Audio, especially speech signal may be extracted using FFT (Fast Fourier Transform) and Wavelet to detect the frequency information of the signal. But it is difficult to extract the changes of small variation of speech signal with time-varying morphological characteristics. So, it is needed to be extracted by signal processing method because there are not visible of graphical audio signal. In this paper, an improved wavelet method has been proposed to extract the precise detection of small abnormalities of both original and noise corrupted speech signal which are taken empirically by writing MATLAB program. The proposed wavelet method found to be more summarized over conventional FFT and Wavelet in finding the small abnormalities of audio signal.

Top