Conference Proceeding
Generation of Biogas from Cow Dung
Onwuliri FC*, Onyimba IA and Nwaukwu IA | |
Department of Plant Science and Technology, Applied Microbiology Unit, Faculty of Natural Sciences, University of Jos, Nigeria | |
Corresponding Author : | Onwuliri FC Department of Plant Science and Technology Applied Microbiology Unit University of Jos, Nigeria Tel: +2348065302804 E-mail: faconwuliri@yahoo.com |
Received July 13, 2013; Accepted November 16, 2013; Published November 23, 2013 | |
Citation: Onwuliri FC, Onyimba IA, Nwaukwu IA (2013) Generation of Biogas from Cow Dung. J Bioremed Biodeg S18:002. doi:10.4172/2155-6199.S18-002 | |
Copyright: © 2013 Onwuliri FC, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
Related article at Pubmed Scholar Google |
Abstract
Four sets of 250 ml conical flasks (A-D), each containing two flasks, were used in triplicates as digesters to determine the possibility of laboratory-scale biogas production from cow dung under four different treatments. Equal volumes of slurry (3 g dung: 10 cm3 water) in the digesters were subjected to anaerobic digestion over a four-week retention period, with weekly measurements of gas yields. Gas was collected by the water displacement method. Flasks A were kept at ambient temperature (25 ± 2°C) and gas was collected over water. The B-flasks were also kept at ambient temperature but gas was collected over lime water. Flasks C were exposed to sunlight outdoors. The D-flasks were kept at 40°C. At the end of the digestion, microbial analyses of the spent slurry were carried out. Gas was produced in digesters A, B and D. The B digesters had the highest total gas yield (15.60 cm3). Differences in total gas yield were significant (p<0.05) for the different treatments. Gas production increased with increase in retention time. Week 4 had the highest percentage gas yield (53.85%) for the B digesters. For the A and D digesters, week 3 and week 2 had the highest percentage gas yields of 41.30% and 39.29%, respectively. The microbial isolates included Bacillus licheniformis, Escherichia coli and Clostridium sp. Cow dung demonstrated a potential for biogas generation.