Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Glycosylphosphatidylinositol-Anchored Protein Chips for Patient-Tailored Multi-Parameter Proteomics | OMICS International | Abstract
ISSN: 2153-0777

Journal of Bioengineering and Bioelectronics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Glycosylphosphatidylinositol-Anchored Protein Chips for Patient-Tailored Multi-Parameter Proteomics

Günter Müller*
Department I, Genetics, Biocenter, Ludwig-Maximilians-University Munich, 82152 Martinsried near Munich, Germany
Corresponding Author : Günter Müller
Sanofi Germany GmbH
R & D Diabetes
Industrial Park Höchst Bldg.
H821.65926 Frankfurt am Main, Germany
Tel:
+49 69 305 4271
Fax: +49 69 305 81901
E-mail: guenter.mueller@sanofi.com
Received November 11, 2010; Accepted November 20, 2011; Published December 15, 2011
Citation: Müller G (2011) Glycosylphosphatidylinositol-Anchored Protein Chips for Patient-Tailored Multi-Parameter Proteomics. J Biochip Tissue chip S3:001. doi:10.4172/2153-0777.S3-001
Copyright: © 2011 Müller G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

For the past two decades, highly multiplexed microarray-based assays have had a major impact on genomic studies, including DNA microarrays for the characterization of cellular states, phenotypic differences and disease markers. However, only recently similar technologies have become widely available for the analysis of the proteome. Traditional single protein assays can yield important information, but they lack a more systematic and comprehensive view that is ultimately required for understanding of the complexity of biological regulation at the cellular and whole-body levels. Unfortunately, the majority of well-established proteomic methods, such as mass spectrometric, 2D-electrophoretic, pull-down or yeast two-hybrid technologies, address only one or two parameters simultaneously. Current efforts are focusing on miniaturizing, multiplexing and generating protein microarrays in a convenient, reproducible and cost-effective fashion. Protein microarrays can be applied for abundance-based arrays, that aim at describing and identifying relative protein amounts, and function-based assays, that manage to identify interactions between distinct proteins or proteins and small molecules, such as enzyme and substrate or inhibitor, as well as to test for post-translational modifications and binding or signalling activities. The recent development of the next-generation chips which are based on glycosylphosphatidyl-inositol-anchored (GPI-) proteins and nanoparticles may facilitate the development of abundance and function-based protein chips. Current GPI-protein chips can be designed as technology platforms designed for quantitative, functional and multiplexed determination of (protein) analytes from cells, tissues, serum and body fluids from very limited amounts of sample. In the near future the application of this class of microarray will be further enlarged ranging from basic research to clinical trials with considerably increased sensitivity, precision and reliability. Ultimately, (GPI-) protein chips may replace conventional non-array-based technologies in personalized and systems biology-based diagnosis.

Keywords

Top