alexa Microbial Degradation of Gasoline in Soil: Comparison b
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Microbial Degradation of Gasoline in Soil: Comparison by Soil Type

Turner DA1, Pichtel J2, Rodenas Y3,2, McKillip J3 and Goodpaster JV1*
1Department of Chemistry and Chemical Biology, Forensic and Investigative Sciences Program, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, USA
2Department of Natural Resources and Environmental Management, Ball State University, Muncie, USA
3Department of Biology, Ball State University, Muncie, USA
Corresponding Author : Goodpaster JV
Department of Chemistry and Chemical Biology
Forensic and Investigative Sciences Program
Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, USA
E-mail: [email protected]
Received December 20, 2013; Accepted February 04, 2014; Published February 10, 2014
Citation: Turner DA, Pichtel J, Rodenas Y, McKillip J, Goodpaster JV (2014) Microbial Degradation of Gasoline in Soil: Comparison by Soil Type. J Bioremed Biodeg 5:216. doi:10.4172/2155-6199.1000216
Copyright: © 2014 Turner DA, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
 

Abstract

During the investigation of a suspicious fire, debris is often collected from the scene and analyzed for residues of ignitable liquids (e.g., gasoline). In cases where the debris is contaminated with soil, it is known that heterotrophic soil microorganisms can alter the chemical composition of the ignitable liquid residue over time. The effects of soil type and season upon this phenomenon are not known, however. Hence, soil collected from locations under three different uses (residential, agricultural, brownfield) were spiked with gasoline and microbial degradation was monitored for 30 days. The soils were also chemically and biologically characterized. Gas chromatographic profiles showed that residential soil was most active and brownfield soil least active for the microbial degradation of gasoline. The brownfield soil possessed relatively high (497 mg/kg) concentrations of Pb, which may have affected bacterial activity. Predominant viable bacterial populations enumerated using real-time reverse transcriptase polymerase chain reaction (RT-PCR) included members of the Alcaligenes, Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, and Pseudomonas genera. Principal Components Analysis (PCA) was found effective in elucidating trends of microbial degradation among the different soil types and seasons. The results of this study demonstrate the necessity of prompt analysis of forensic evidence for proper identification of possible ignitable liquids.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords