alexa
Reach Us +1-218-451-2974

GET THE APP

Microbial Sources of Amyloid and Relevance to Amyloidogenesis andAlzheimer's Disease (AD) | OMICS International | Abstract
ISSN: 2161-0460

Journal of Alzheimers Disease & Parkinsonism
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Commentary

Microbial Sources of Amyloid and Relevance to Amyloidogenesis andAlzheimer's Disease (AD)

Zhao Y1,2, Dua P3 and Lukiw WJ1,4,5

1LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA

2Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA

3Department of Health Information Management, Louisiana State University Ruston LA 71270 USA

4Departments of Ophthalmology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA

5Departments of Neurology, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans LA 70112 USA

Corresponding Author:
Walter J Lukiw
Professor of Neuroscience
Neurology and Ophthalmology Bollinger Professor of Alzheimer’s disease
LSU Neuroscience Center of Excellence
Louisiana State University Health Sciences Center2020 Gravier Street, Suite 904
Tel: 504-599-0842
E-mail: [email protected]

Received date: December 14, 2014; Accepted date: January 05, 2015; Published date: January 15, 2015

Citation: Lukiw WJ, Zhao Y and Dua P (2015) Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer’s Disease (AD). J Alzheimers Dis Parkinsonism 5:177. doi:10.4172/2161-0460.1000177

Copyright: © 2015 Walter J. Lukiw et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Since the inception of the human microbiome project (HMP) by the US National Institutes of Health (NIH) in 2007 there has been a keen resurgence in our recognition of the human microbiome and its contribution to development, immunity, neurophysiology, metabolic and nutritive support to central nervous system (CNS) health and disease. What is not generally appreciated is that (i) the ~1014 microbial cells that comprise the human microbiome outnumber human host cells by approximately one hundred-to-one; (ii) together the microbial genes of the microbiome outnumber human host genes by about one hundred-and-fifty to one; (iii) collectively these microbes constitute the largest ‘diffuse organ system’ in the body, more metabolically active than the liver; strongly influencing host nutritive-, innate-immune, neuroinflammatory-, neuromodulatory- and neurotransmission-functions; and (iv) that these microbes actively secrete highly complex, immunogenic mixtures of lipopolysaccharide (LPS) and amyloid from their outer membranes into their immediate environment. While secreted LPS and amyloids are generally quite soluble as monomers over time they form into highly insoluble fibrous protein aggregates that are implicated in the progressive degenerative neuropathology of several common, age-related disorders of the human CNS including Alzheimer’s disease (AD). This general commentary-perspective paper will highlight some recent findings on microbial-derived secreted LPS and amyloids and the potential contribution of these neurotoxic and proinflammatory microbial exudates to age-related inflammatory amyloidogenesis and neurodegeneration, with specific reference to AD wherever possible.

Keywords

Recommended Conferences
Google scholar citation report
Citations : 2275

Journal of Alzheimers Disease & Parkinsonism received 2275 citations as per google scholar report

Journal of Alzheimers Disease & Parkinsonism peer review process verified at publons
Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page
Top