Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Modelling Biogas Fermentation from Anaerobic Digestion: Potato Starch Processing Wastewater Treated Within an Up flow Anaerobic Sludge Blanket

Philip Antwi1*, Jianzheng Li1, En Shi1, Portia Opoku Boadi2 and Frederick Ayivi3

1State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China

2School of Management, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China

3Department of Geography, University of North Carolina, 237 Graham building, 1009 Spring Garden St, Greensboro, NC27412, USAX

*Corresponding Author:
Philip Antwi
State Key Laboratory of Urban Water Resource
and Environment, School of Municipal and Environmental
Engineering, Harbin Institute of Technology
73 Huanghe Road, Harbin 150090, PR China
Tel: +8645186283761
Fax: +8645186283761
E-mail: kobbyjean@yahoo.co.uk

Received Date: March 07, 2017 Accepted Date: March 16, 2017 Published Date: March 20, 2017

Citation: Antwi P, Li J, Shi E, Boadi PO, Ayivi F (2017) Modelling Biogas Fermentation from Anaerobic Digestion: Potato Starch Processing Wastewater Treated Within an Up flow Anaerobic Sludge Blanket. J Bioremediat Biodegrad 8: 388. doi: 10.4172/2155-6199.1000388

Copyright: © 2017 Antwi P, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Herein, a modeling approach to predict biogas yield within a mesophilic (35 ± 1°C) upflow anaerobic sludge blanket (UASB) reactor treating potato starch processing wastewater (PSPW) for pollutant removal was conducted. HRTs and seven anaerobic process-related parameters viz; chemical oxygen demand (COD), ammonium (), alkalinity, total Kjeldahl Nitrogen, total phosphorus, volatile fatty acids (VFAs) and pH with average concentration of 4028.91, 110.09, 4944.67, 510.47, 45.20, 534.44 mg/L and 7.09, respectively, were used as input variables (x) to develop stochastic models for predicting biogas yield from the anaerobic digestion of PSPW. Based on the prediction accuracy of the models, it was established that, prediction of biogas yield from the UASB with the combination of COD, NH4+ and HRT, or COD, NH4+, HRT and VFAs as input variables proved more efficient as opposed to HRT, alkalinity, total Kjeldahl Nitrogen, total phosphorus and pH. Highest coefficient of determination (R2) observed was 97.29%, suggesting the efficiency of the models in making predictions. The developed models efficiencies concluded that the models could be employed to control the dynamic anaerobic process within UASBs since prediction of biogas obtained in the UASB agreed with the experimental result.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top