Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
Molecular Assessment of Microbial Species Involved in the Biodegradation of Crude Oil in Saline Niger Delta Sediments Using Bioreactors | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Molecular Assessment of Microbial Species Involved in the Biodegradation of Crude Oil in Saline Niger Delta Sediments Using Bioreactors

Chioma Blaise Chikere*, Chinedu Christopher Obieze and Phillip Okerentugba
Department of Microbiology, University of Port Harcourt, Rivers State, Nigeria
Corresponding Author : Chioma Blaise Chikere
Department of Microbiology
University of Port Harcourt, Rivers State, Nigeria
Tel: 2347030912861
E-mail: [email protected]
Received July 02, 2015; Accepted August 05, 2015; Published August 07, 2015
Citation: Chikere CB, Obieze CC, Okerentugba P (2015) Molecular Assessment of Microbial Species Involved in the Biodegradation of Crude Oil in Saline Niger Delta Sediments Using Bioreactors. J Bioremed Biodeg 6:307. doi:10.4172/2155- 6199.1000307
Copyright: © 2015 Chikere CB, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google


Purpose: At elevated salinities conventional microbiological processes are not very effective, therefore clean up of contaminants using bioremediation strategy will involve the use of halophilic and halo-tolerant bacterial species. This research therefore aimed at isolating and identifying potential halophilic and halo-tolerant bacterial species capable of hydrocarbon degradation during bioreactor based treatment with exogenous nutrients. Methods: The diversity of indigenous bacterial species with potential to degrade hydrocarbons was investigated using both culture-dependent and independent techniques. Bioremediation of hydrocarbon contaminated saline sediments was carried out using seven 2.5 liter bioslurry bioreactors operated over a 64-day period. Physicochemical parameters monitored were pH, nitrate, phosphate, total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbon (PAH), temperature, salinity, and total organic carbon (%TOC). Results: The baseline TPH, PAH and pH of the sediments were 19 ppm, 3.1 ppm and 7.0 respectively. The baseline salinity of the sediment was 10% thus the sediment was adjudged moderately saline. TPH ranged from 97 ppm-105 ppm on day zero and decreased to an average of 5.62 ppm on day 64, while PAH ranged from 56 ppm-61 ppm on day zero and decreased to an average of 4.02 ppm on day 64. The bacterial species identified as potential hydrocarbon degraders includes Halomonas lutea, Achromobacter spp, Aquitalea magnusonii, Bacillus sp, Sphingobacterium sp, Shewanella sp, Brevundimonas naejangsanensis, Pseudomonas pseudoalcaligenes, Pseudomonas aeruginosa, unidentified bacterium BH23 and Gordonia sp. The genus Pseudomonas formed majority of the isolates successfully sequenced and exhibited similarity values ranging from 91% to 100% with sequences deposited in GenBank. A combination of both molecular and culture based technique allowed the identification to species level of twelve isolates. One isolate could not be identified while the remaining isolates were identified to their generic level. Treatment BCD recorded highest total culturable heterotrophic bacteria (TCHB) count (7.1 × 108 cfu/g) and total culturable hydrocarbon utilizing bacteria (TCHUB) count (6.7 × 108 cfu/g). There was a significant difference at P<0.05 in TCHUB bacteria counts between the unamended bioreactor slurries and those amended with organic and inorganic nutrients. There were also significant differences in TCHUB counts when the bioaugumented slurry was compared with those amended with NPK, Urea and cow dung using one way ANOVA and Tukey’s multiple comparison tests. Conclusion: This study revealed potentially novel bacterial species and previously described hydrocarbon degrading bacterial species that can be characterized further to determine their role in hydrocarbon degradation as well as their salt tolerance level prior to application in bioremediation of saline environments.


Google Scholar citation report
Citations : 6613

Journal of Bioremediation & Biodegradation received 6613 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
Share This Page