Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar


Novel Microchip Technique for the Transfer of Spheroids as Floating Cultures to Micropatterned-Adherent Cultures | OMICS International | Abstract
ISSN: 2153-0777

Journal of Bioengineering and Bioelectronics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Novel Microchip Technique for the Transfer of Spheroids as Floating Cultures to Micropatterned-Adherent Cultures

Sakai Y1,2 and Nakazawa K1*
1Department of Life and Environment Engineering, The University of Kitakyushu, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
2Research Fellow of the Japan Society for the Promotion of Science (JSPS), Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
Corresponding Author : Kohji Nakazawa
Department of Life and Environment Engineering
The University of Kitakyushu, Hibikino
Wakamatsu-ku, Kitakyushu
Fukuoka 808-0135, Japan
Tel: +81-93-695-3292
Fax: +81-93-695-3359
Received June 18, 2010; Accepted December 05, 2011; Published December 10, 2011
Citation: Sakai Y, Nakazawa K (2011) Novel Microchip Technique for the Transfer of Spheroids as Floating Cultures to Micropatterned-Adherent Cultures. J Biochip Tissue chip S4:001. doi:10.4172/2153-0777.S4-001
Copyright: © 2011 Sakai Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Spherical multicellular aggregate (spheroid) culture has attracted attention as useful technique for tissue engineering or regenerative medicine research and cell-based assay studies. Although spheroids are generated using floating culture method on non-adhesive surface, the transfer of floating spheroids to adherent culture holds importance for various applications. In this paper, we successfully established a novel microchip technique which allowed the formation of spheroids with uniform size and their transfer from a floating condition to a micropatterned adherent culture. A spheroid transfer chip (ST chip) contained 270 microwells (600 ?m in diameter, 600 ?m in depth, and 660 ?m in pitch) composed of a through-hole PMMA frame and a PDMS sheet, and the surface of microwells was modified with PEG to create non-adhesive surface. Mouse ES cells, NIH 3T3 cells, HepG2 cells, and rat primary hepatocytes spontaneously formed spheroids in each microwell of the chips. The micropatterned adherent culture of spheroids was realized by simple procedures, which the ST chip was flipped onto a collagencoated dish, and then the PDMS sheet was peeled off after the spheroids fell onto the dish. The transferred spheroids gradually spread on the collagen-coated dish, and the overlap of cells extending from each spheroid occurred in order of mouse ES cells, 3T3 cells, HepG2 cells, and primary rat hepatocytes. This difference may be due to cell proliferation ability, cell viability in the spheroid, and spheroid size. Because the chip characteristics such as the microwell size, the pitch between spheroids, spheroid sizes, and spheroid number can be designed according to the experimental needs, this chip technique is a promising tool for spheroid study.