alexa
Reach Us +3228082557
Pectinmethylesterase Production from mixed agro- wastes by Penicillium notatum NCIM. 923 in Solid-State fermentation | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Pectinmethylesterase Production from mixed agro- wastes by Penicillium notatum NCIM. 923 in Solid-State fermentation

Soumi Gayen* and Uma Ghosh
Department of Food Technology & Biochemical Engineering Jadavpur University, West Bengal, Kolkata, India
Corresponding Author : Soumi Gayen
Department of Food Technology & Biochemical Engineering Jadavpur University, West Bengal, Kolkata, India,
E-mail: [email protected]
Received April 16, 2011; Accepted June 15, 2011; Published June 17, 2011
Citation: Gayen S, Ghosh U (2011) Pectinmethylesterase Production from mixed agro- wastes by Penicillium notatum NCIM. 923 in Solid-State fermentation. J Bioremed Biodegrad 2:119. doi:10.4172/2155-6199.1000119
Copyright: © 2011 Gayen S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

The enzyme pectinmethylesterase (PME; EC 3.1.1.11) catalyzes the hydrolysis of the methyl ester groups from pectin and has been found in plants as well as in pathogenic fungi and bacteria. PME is of significance to the citrus industry because it has been established as the causative agent for juice clarification and gelation of frozen concentrates. The fruit processing industries produce a large amount of waste material, which poses considerable disposal problems and ultimately leads to pollution. Dried citrus peel is rich in carbohydrates, proteins and pectin; pectin acts as the inducer for production of pectinolytic enzymes by microbial systems. Thus, in the present study, dried citrus peel and wheat bran was used as substrate for the production of pectin methyl esterase (PME; EC 3.1.1.11) by fungus Penicillium notatum . Maximum enzyme activity was obtained with 1:1(w/w) substrate ratio, which gives a solid mass of initial pH 5.5, when incubated at 30°C for 120 h at 1:1 (w/v) initial moisture content ratio under static condition.

Keywords

Recommended Conferences

2nd World Congress on Biopolymers & Bioplastics

Paris, France

4th Annual Congress on Soil, Plant and Water Sciences

Barcelona, Spain
Share This Page
Top