Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes

Amruta Manke1, Sudjit Luanpitpong1,2 and Yon Rojanasakul1,2*

1Department of Pharmaceutical Sciences, West Virginia University, Morgantown, USA

2Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA

*Corresponding Author:
Yon Rojanasakul
Department of Pharmaceutical Sciences
West Virginia University, Morgantown, WV 26506, USA
Tel: (304)293-1476
Fax: (304)293-2576
E-mail: yrojan@hsc.wvu.edu

Received date: May 12, 2014; Accepted date: June 06, 2014; Published date: June 13, 2014

Citation: Manke A, pong SL, Rojanasaku Y (2014) Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes. Occup Med Health Aff 2:165. doi:10.4172/2329-6879.1000165

Copyright: © 2014 Rojanasakul Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Given their remarkable properties, carbon nanotubes (CNTs) have made their way through various industrial and medicinal applications and the overall production of CNTs is expected to grow rapidly in the next few years, thus requiring an additional recruitment of workers. However, their unique applications and desirable properties are fraught with concerns regarding occupational exposure. The concern about worker exposure to CNTs arises from the results of recent animal studies. Short-term and sub-chronic exposure studies in rodents have shown consistent adverse health effects such as pulmonary inflammation, granulomas, fibrosis, genotoxicity and mesothelioma after inhalation or instillation of several types of CNTs. Furthermore, physicochemical properties of CNTs such as dispersion, functionalization and particle size can significantly affect their pulmonary toxicity. Risk estimates from animal studies necessitate implementation of protective measures to limit worker exposure to CNTs. Information on workplace exposure is very limited, however, studies have reported that CNTs can be aerosolized and attain respirable airborne levels during synthesis and processing activities in the workplace. Quantitative risk assessments from sub-chronic animal studies recommend the health-based need to reduce exposures below the recommended exposure limit of 1 μg/m3. Practice of prevention measures including the use of engineering controls, personal protective equipment, health surveillance program, safe handling and use, as well as worker training can significantly minimize worker exposure and improve worker health and safety.

Keywords

Top