ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Production, Purification and In-silico Characterization of Azoreductase Enzyme Azor1 KF803342 from Pluralibacter gergoviae Involved in Dye Degradation

Megha K Purohit and Piyush V Desai*
Department of Biosciences, Veer Narmad South Gujarat University, Surat, India
Corresponding Author : Piyush V Desai
Department of Biosciences
Veer Narmad South Gujarat University
Gujarat, India
Tel: +91 281-2586419
E-mail: piyushdesairj@yahoo.com/ meghapurohit@gmail.com
Received January 02, 2014; Accepted February 21, 2014; Published February 26, 2014
Citation: Purohit MK, Desai PV (2014) Production, Purification and In-silico Characterization of Azoreductase Enzyme Azor1 KF803342 from Pluralibacter gergoviae Involved in Dye Degradation. J Bioremed Biodeg 5:217. doi:10.4172/2155-6199.1000217
Copyright: © 2014 Purohit MK, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Azo dyes are a wide spread class of poorly biodegradable industrial pollutants.The process of optimization of degradative potential is certainly a challenging task for its industrial applicability. In our current studies; we tried to understand whether azoreductases enzyme plays a significant role in textile dye degradation process.

Optimization of media for maximum degradation by response surface methodologywould certainly boost cleanup of dye pollutants. Further, getting insight into the azoreductase enzyme properties of the enzyme by purification and insilico approaches would allow us to know the structural and functional properties of enzyme. The azoreductase gene isolated from Pluralibacter gergoviae was amplified and sequenced; it showed partial homology to an azoreductase identified in Cronobacter sp. The identity of the enzyme was confirmed by sequencing of azoreductase gene. The nucleotide sequence of enzyme was submitted to Gene bank, accession number-KF803342. The structure of azoreductase was modeled having four FMN binding site. This research provides insight into the use of response surface methodology to rapidly optimize dye biodegradation parameters.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top