alexa Propranolol and Structurally Novel Derivatives as Positive Allosteric Modulators of the Alpha-7-nicotinic Acetylcholine Receptor | OMICS International | Abstract
ISSN: 2167-065X

Clinical Pharmacology & Biopharmaceutics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Propranolol and Structurally Novel Derivatives as Positive Allosteric Modulators of the Alpha-7-nicotinic Acetylcholine Receptor

*Corresponding Author:

Copyright: © 0  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

Purpose: Alpha-7-nicotinic acetylcholine receptor (α7-nAChR) positive allosteric modulators (PAMs) are a potential disease modifying treatment for Alzheimer’s disease, as exemplified by the approved drug galantamine. However, clinical development of this class of compounds has stalled due to poor efficacy and severe adverse reactions, likely related to receptor overstimulation-induced neurotoxicity. In this study, we searched for alternative α7-nAChR PAMs and tested their effect at the receptor. Methods: A α7-nAChR PAM pharmacophore model was used to screen over 1000 FDA approved drugs and commercially available compounds. Patch clamping was used to assess the six most promising compounds selected from 160 hits. We designed structurally novel derivatives of one of these hits, namely propranolol, and five were synthesized and tested. Results: Three compounds from the initial virtual screen demonstrated α7-nAChR PAM activity: riboflavin, bromocriptine, and propranolol. Propranolol was noted to possess both α7-nAChR PAM and inhibitory activity at lower and higher concentrations, respectively. Four of propranolol’s analogs also displayed α7-nAChR PAM activity with evidence of functional inhibition at higher concentrations. Conclusions: Novel compounds with α7-nAChR PAM activity were successfully identified using a computational approach. Several compounds displayed functional inhibition at higher concentrations, which may allow for clinical use without risking overstimulation induced excitotoxicity.

Keywords

Recommended Conferences
Share This Page
Top