Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Role of Biotechnology in Phytoremediation | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Role of Biotechnology in Phytoremediation

Buhari Muhammad L1*, Sulaiman Babura R2, Vyas NL1, Badaru Sulaiman1 and Harisu Umar Y1
1Department of Botany, Jodhpur National University, India
2Department of Agrobiotechnology, Universiti Putra, Malaysia
*Corresponding Author : Buhari Muhammad L
Department of Botany
Jodhpur National University, India
Tel: +919001137408
E-mail: buharilawan20@gmail.com
Received January 18, 2016; Accepted February 02, 2016; Published February 10, 2016
Citation: Buhari Muhammad L, Sulaiman Babura R, Vyas NL, Sulaiman B, Harisu Umar Y (2016) Role of Biotechnology in Phytoremediation. J Bioremed Biodeg 7:330. doi: 10.4172/2155-6199.1000330
Copyright: © 2016 Buhari Muhammad L, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Phytoremediation, the use of plants and their associated microbes to accumulate, detoxify and/or stabilise contaminants, is an environment-friendly and sustainable means of remediating contaminated soil and water. Phytoremediation has been an important aspect of constructed wetlands, which have been used successfully to detoxify large volumes of wastewater with dilute concentrations of contaminants, including petroleum, hydrocarbons, chlorinated solvents, pesticides, explosives, heavy metals and radio nucleids. The most important requirement for Phytoremediation is the use of fast growing high biomass plants that are capable of uptake and accumulation of large amounts of toxic metals in their aboveground harvestable parts. In recent years major scientific progress has been made in understanding the physiological mechanism of metal uptake and transport in these plants. Since most metal hyper accumulators are slow growing and have low biomass, bioengineering of non accumulators having high biomass is essential for effective phytoremediation. Plants adopted for phytoremediation are usually found to exhibit the specific property due to the presence of the special genes coding for it. These plants are usually seen in area where metal ores exist. The genes responsible for this resistance by such plants are isolated and expressed in wide variety of transgenic plants so that they can be made resistant as well. This increases the number of plant species that can be used for such purpose. It is also possible with the help of biotechnology to increase the gene expression for maximum resistance. Certain plants are seen to show increased resistance under the presence of certain microbes. Biotechnology makes it possible to isolate such microbes and enrich the soil so as to enhance the phytoremediation by respective plants. This paper reviews the biotechnological approaches to improve plants’ ability to tolerate different pollutants and phytoremediation efficiency and highlights future challenges

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top