alexa Safe Biodegradation of Textile Azo Dyes by Newly Isolated Lactic Acid Bacteria and Detection of Plasmids Associated With Degradation | OMICS International
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Safe Biodegradation of Textile Azo Dyes by Newly Isolated Lactic Acid Bacteria and Detection of Plasmids Associated With Degradation

Khaled Elbanna1*, Gamal Hassan2, Manal Khider3 and Raafat Mandour4
1Department of Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
2Department of Genetics, Rabie, Zagazig University, Egypt
3Department of Dairy Science, Faculty of Agriculture University of Khartoum, Sudan
4Toxicology Lab, Emergency Hospital, MansouraUniversity, Egypt
Corresponding Author : Khaled Elbanna
Department of Microbiology, Faculty of Agriculture
Fayoum University, Fayoum 63514, Egypt
Tel: +2-084-6380655
Fax: +2-084-6334964
E-mail: [email protected]
Received October 28, 2010; Accepted November 29, 2010; Published December 01, 2010
Citation: Elbanna K, Hassan G, Khider M, Mandour R (2010) Safe Biodegradation of Textile Azo Dyes by Newly Isolated Lactic Acid Bacteria and Detection of Plasmids Associated With Degradation. J Bioremed Biodegrad 1:110. doi: 10.4172/2155-6199.1000110
Copyright: © 2010 Elbanna K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Since azo dyes are recalcitrant to complete biodegradation due to their complex structure, lactic acid bacteria under an anaerobic/aerobic sequential system was used in an attempt to achieve complete mineralization of textile azo dyes for safe degradation products. A total of 120 lactic acid bacteria (LAB) were screened for decolorization of the textile azo dyes; Reactive Lanasol Black B (RLB), Eriochrome Red B (RN) and 1, 2 metal complexes I. Yellow (SGL). The screening results showed that a total of 80 out of 120 LAB isolates were able to decolorize the dyes, in 4 h ranging from 75 to 100%. Based on API 50 CHL and 16S rDNA sequences, Lactobacillus casei and L.paracasei were the nearest phylogenetic neighbour for both strains Lab11 and Lab13, with an identity of 99 %, while L.rhamnosus was the nearest phylogenetic neighbour for isolate Lab2 with an identity of 99 %. The biodegradation products of RLB (as a model of textile azo dyes) by Lab2 formed during anaerobic and sequential anarobic/aerobic treatments were analyzed by HPLC. Peaks at different retention times were observed in the anaerobic stage, and these peaks completely disappeared at the end of anarobic/aerobic incubation. This result clearly indicates that the dye had been catabolized and utilized by Lab2 isolate. Among the different plasmid curing treatments, SDS at 42°C was found to be an effective treatment for curing of these isolates. Plasmid profiles of wild-type strains and their cured derivatives indicates that the loss of the ability to decolorize azo dyes correlated to loss of a 3 kb plasmid, suggesting that the genes required for textile azo dye degradation were located on this plasmid. Azo dye degradation products were less toxic to growing Sorghum bicolor than the original azo dyes.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version