ISSN: 2329-910X

Clinical Research on Foot & Ankle
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Clin Res Foot Ankle, Vol 5(3): 245
  • DOI: 10.4172/2329-910X.1000245

Skin Hardness and Epidermal Thickness Affect the Vibration Sensitivity of the Foot Sole

Yves Jammes1,2*, Manon Viala2, Wendy Dutto2, Jean Paul Weber2 and Regis Guieu1
1Faculty of Medicine, Aix Marseille University, Marseille, France
2School of Podiatry, , Marseille, France
*Corresponding Author : Yves Jammes, Faculty of Medicine, Aix Marseille University, Marseille, France, Tel: 33491698924, Fax: 33491698927, Email: yves.jammes@univ-amu.fr

Received Date: Aug 11, 2017 / Accepted Date: Aug 21, 2017 / Published Date: Aug 28, 2017

Abstract

Objective: The cutaneous mechanoreceptors of the foot sole detect the changes in the application of mechanical loads on the plantar surface during gait and standing, and contribute to controlling the standing balance and postural reflexes in healthy subjects. A local thickening of the foot sole skin occurs in response to repetitive load application. We hypothesized that an elevated skin hardness of the foot sole could reduce its mechano sensitivity.
Methods: In healthy subjects, we quantified the sensation produced by different amplitudes of vibratory stimulations at two frequencies (25 and 150 Hz). The vibration threshold was determined on the 1st or 2nd, and 5th metatarsal heads, and the heel at each vibration frequency. The Stevens power function (Ψ=k.Φn) allowed to obtain regression equations between the estimate (Ψ) of the vibratory stimuli and their physical magnitude (Φ). Any increase in the absolute k value (all were negative) indicated a reduced sensitivity to the lowest loads. The n coefficient measured the global perception. The highest skin hardness (Shore) was measured on the 5th metatarsal head and the heel. In some subjects, superficial skin abrasion of the 5th metatarsal head was performed and the vibration sensitivity was tested again.
Results: The vibration threshold was significantly higher at the level of the 5th metatarsal head and the heel. The k value was significantly higher at the 25 and 150 Hz frequencies for the 5th metatarsal head, and only at 25 Hz for the heel. At both vibration frequencies, negative correlations were obtained between the k values and skin hardness. After skin abrasion, the n coefficient was significantly higher at both vibration frequencies.
Conclusion: Skin hardness affects the foot sole mechano sensitivity and could alter the control of posture during standing and walking. This indicates that foot care by podiatrist are relevant to improve posture control.

Keywords: Skin hardness; Foot sole; Sensitivity to vibration; Stevens power law; Healthy subjects

Citation: Jammes Y, Viala M, Dutto W, Weber JP, Guieu R (2017) Skin Hardness and Epidermal Thickness Affect the Vibration Sensitivity of the Foot Sole. Clin Res Foot Ankle 5: 245. Doi: 10.4172/2329-910X.1000245

Copyright: © 2017 Jammes Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top