alexa Stable Isotope Probing - A Tool for Assessing the Potential Activity and Stability of Hydrocarbonoclastic Communities in Contaminated Seawater | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Stable Isotope Probing - A Tool for Assessing the Potential Activity and Stability of Hydrocarbonoclastic Communities in Contaminated Seawater

Petra J Sheppard1*, Eric M Adetutu1, Alexandra Young2, Mike Manefield3, Paul D Morrison1 and Andrew S Ball1
1RMIT University, School of Applied Science, Bundoora, Victoria 3083, Australia
2Flinders University, School of Biological Sciences, Bedford Park, SA, 5042, Australia
3Centre for Marine Bio innovation, University of New South Wales, Sydney, New South Wales, 2052, Australia
Corresponding Author : Petra J Sheppard
RMIT University
School of Applied Science, Bundoora
Victoria 3083, Australia
Tel: (61) 3 9925 6678
E-mail: [email protected]
Received June 04, 2013; Accepted July 16, 2013; Published July 18, 2013
Citation: Sheppard PJ, Adetutu EM, Young A, Manefield M, Morrison PD, et al. (2013) Stable Isotope Probing - A Tool for Assessing the Potential Activity and Stability of Hydrocarbonoclastic Communities in Contaminated Seawater. J Bioremed Biodeg 4:192. doi:10.4172/2155-6199.1000192
Copyright: © 2013 Sheppard PJ, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

To optimize bioremediation strategies, knowledge of which bacterial groups are actually degrading specific hydrocarbon fractions is required. In this study, we monitored the utilization rate of unlabeled ( 12 C) and labeled ( 13 C) substrates, benzene (0.559 μL L -1 h -1 ) and hexadecane (0.330 μL L -1 h -1 ) in seawater pre-exposed to hydrocarbons over 72 h in laboratory based microcosms. Microbial community analysis by RNA-SIP DGGE showed substantial differences between the banding pattern of 12 C and 13 C communities. Cluster analysis of the microbial community profiles showed that the labeled bacterial population was ~25% similar to the original community in the unlabeled microcosms. This suggested that only a subset of the original bacterial community appeared to have utilized the labeled substrates. Sequence analysis of 16S rRNA gene sequences revealed the presence of known hydrocarbon degraders including Alcanivorax , Acinetobacter , Pseudomonas and Roseobacter . The presences of a number of Firmicutes in both sets of mesocosms suggest that these species were able to utilize both benzene and hexadecane. This study highlights the benefits of incorporating RNA-SIP in remediation studies to enhance the understanding of microbial communities in contaminated seawater.

Keywords

Recommended Conferences

2nd World Congress on Biopolymers & Bioplastics

Paris, France

4th Annual Congress on Soil, Plant and Water Sciences

Barcelona, Spain
Share This Page
Top