alexa

GET THE APP

Statistical Methodology for Cadmium (Cd(II)) Removal from Wastewater by Different Plant Biomasses | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Statistical Methodology for Cadmium (Cd(II)) Removal from Wastewater by Different Plant Biomasses

Alaa El Din Mahmoud* and Manal Fawzy
Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, Egypt
Corresponding Author : Alaa El Din Mahmoud
Environmental Sciences
Department Faculty of Science
Alexandria University Alexandria, Egypt
Tel:
+1285849461
E-mail:
[email protected]
Received: June 09, 2015 Accepted: July 06, 2015 Published: July 08, 2015
Citation:Mahmoud AED, Fawzy M (2015) Statistical Methodology for Cadmium (Cd(II)) Removal from Wastewater by Different Plant Biomasses. J Bioremed Biodeg 6: 304. doi:10.4172/2155-6199.1000304
Copyright: ©2015 Mahmoud AED. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google

Abstract

The combined effects of metal ion concentration (X), hydrogen ion concentration (pH) and biomass dose (BD), on the biosorption of Cadmium Cd(II) were investigated. Two different plant biomasses; rice straw (Oryza sativa) and dragon tree leaves (Dracaena draca) were studied. The optimum conditions were found at (X)=10 ppm, (pH)=7 and (BD)=0.5 g. Under these conditions, desirability values of 0.996 and 0.997 for rice straw and dragon tree leaves were obtained, showing that the calculated model may represent the experimental model and give the desired conditions. The samples before and after biosorption experiments were characterized by Energy Dispersive X-Ray Spectroscopy.

Keywords

Top