Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar


Structural and Functional Characterization of a Soil Microbial Community which is Able to Convert Waste Cooking Oil to Fatty-acid-Derived Fuels | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Structural and Functional Characterization of a Soil Microbial Community which is Able to Convert Waste Cooking Oil to Fatty-acid-Derived Fuels

Xuanyu Tao1, Li Yan1, Zhengsheng Yu1, Mengxin Zhao2, Xiaowei Zhang1, Pu Liu1 and Xiangkai Li1*
1MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
2State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
Corresponding Author : Xiangkai Li
Key Laboratory of Cell Activities and Stress Adaptations
School of Life Sciences
Lanzhou University
Gansu, 730000, PR China
Tel: 86-931-8912561
Fax: 86-931-8912560
Received May 24, 2013; Accepted August 23, 2013; Published August 25, 2013
Citation: Tao X, Yan L, Yu Z, Zhao M, Zhang X, et al. (2013) Structural and Functional Characterization of a Soil Microbial Community which is Able to Convert Waste Cooking Oil to Fatty-acid-Derived Fuels. J Bioremed Biodeg 4:201. doi:10.4172/2155-6199.1000201
Copyright: © 2013 Tao X, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Waste Cooking Oil (WCO) is classified as waste material and harmful to the environment and human health. Searching a cost-effective and eco-friendly approach to recycle WCO is urgent in China. In this study, three soil samples were collected and their WCO degradation ability was investigated. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed that a soil sample collected near a restaurant disposal site was able to convert WCO to fatty-acid-derived fuels after 90 days’ anaerobic fermentation. The calorific value of the fermentation products increased by 17.2%. 16S meta sequencing data showed that this microbial community has a unique structure. Proteobacteria was the most abundant microbial phylum representing 60.4298% of the whole community. The percentage was almost three times higher than that in the other two microbial communities which cannot degrade WCO. Magnetospirillum, a genus of Proteobacteria, was much more abundant than the other genera in this phylum, accounting for 11.2% of the total population. The unusual community composition might correlate with its ability of WCO degradation and Proteobacteria phylum and Magnetospirillum genus may play key roles in the decomposition of WCO. To our knowledge, this is the first finding that a microbial community is able to convert WCO to fatty-acid-derived fuels, which might provide an alternative approach of reprocessing WCO.


Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
Share This Page