ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Earth Sci Clim Change,
  • DOI: 10.4172/2157-7617.1000469

Temporal Variability of Sea Surface Temperature Patterns in the Gulf of Lions During Heavy Precipitation Events in The Cevennes-Vivarais Region

Robins L1*, Anna B1, Marie D2, Jonathan B2,3,4, Cindy LB4 and Haim K1
1Department of Science, University of Haifa, Israel
2Department of Science, Mercator Ocean, Research institute in Ramonville-Saint-Agne, , France
3Department of Science, Météo-France, Previsions Meteo, Site Officiel de Météo-France, , France
4Department of Science, CNRM (UMR3589, Meteo-France/CNRS), , France
*Corresponding Author : Robins L, Department of Science, University of Haifa, Israel, Tel: 00972524800083, Email: lotemrobins@gmail.com

Received Date: Apr 24, 2018 / Accepted Date: May 05, 2018 / Published Date: May 09, 2018

Abstract

The Cévennes-Vivarais region in southern France frequently suffers from Heavy Precipitation Events (HPEs), especially during the autumn season. The northwestern Mediterranean Sea is a source of heat and moisture for these HPEs, with strong air sea exchanges, which are mainly controlled by the near-surface wind intensity and the Sea Surface Temperature (SST). The aim of this study is to characterize the SST structures, location and variability related to HPEs. Indeed, the Gulf of Lion is characterized by a cyclonic circulation with three main oceanic features: (1) the Northern Current (NC), (2) the Balearic Front (BF), (3) and the deep Convective Cell (CC). The MEDidterranean ReanalYsiS (MEDRYS1V2), an ocean reanalysis at 1/12˚ resolution was used over the 2000-2011 period to identify the NC, BF and CC oceanic feature's locations and for the calculation of an SST index. Then, an unsupervised cluster analysis method, using Principle Component Analysis for dimension reduction and the Silhouette for clustering, was used 20 in order to determine the most typical periods. The Local Moran's I (LMI) spatial statistical method, was used to highlight the areas of significant temporal variability of SST, considering the periods defined with the clustering method. For each period [early autumn (August-September), October and late autumn (November-December)], the LMI values, only considering the HPE initial stage, are extracted and compared to the averaged LMI values. The results highlight that in August-September, the Rhone river outflow have the most significant effect on SST variability on average, same as during HPEs. In October, for the HPEs initial stage, the largest variability seems to be related to the effects of the Mistral and Tramontane wind. In later autumn, there is a southward displacement of the BF and CC patterns and during the HPEs initial stage, the most significant SST variability is found near the center of the CC.

Keywords: Heavy precipitation events; Sea surface temperature; North-Western Mediterranean Sea circulation; Statistical clustering; Local Moran's I; Silhouette

Citation: Robins L, Anna B, Marie D, Jonathan B, Cindy LB, et al. (2018) Temporal Variability of Sea Surface Temperature Patterns in the Gulf of Lions During Heavy Precipitation Events in The Cevennes-Vivarais Region. J Earth Sci Clim Change 9: 469. Doi: 10.4172/2157-7617.1000469

Copyright: © 2018 Robins L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top