Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar
The Effect of Soil pH on Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHS) | OMICS International | Abstract
ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Effect of Soil pH on Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHS)

Rakesh M. Pawar*
Department of Biotechnology and Pharmacology Health Science, Division of Biosciences, School of Life Sciences, University of Hertfordshire, Hatfield, Hertfordshire, England, UK
Corresponding Author : Rakesh M. Pawar
Department of Biotechnology and Pharmacology Health Science
Division of Biosciences
School of Life Sciences
University of Hertfordshire, Hatfield
Hertfordshire, England, UK
Tel: 8237211601
E-mail: [email protected]
Received April 10, 2015; Accepted April 28, 2015; Published April 30, 2015
Citation: Pawar RM (2015) The Effect of Soil pH on Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHS). J Bioremed Biodeg 6:291. doi:10.4172/2155-6199.1000291
Copyright: © 2015 Pawar RM This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google


Environmental fate of polycyclic aromatic hydrocarbons (PAHs) is a significant issue raising interest in bioremediation. Soil microorganism plays a vital role in degradation of PAHs and uses various metabolic pathways for degradation process. The effect of soil pH on degradation of PAH with a view to manipulating soil pH to enhance the bioremediation of PAH’s was studied. The degradation rate of key PAHs (phenanthrene, anthracene, flouranthene, and pyrene) was monitored in an Arthur Brower’s topsoil at range of soil pH (5-8). Isolation of microbes degrading PAHs was carried out. L-arginine ammonification was measured to estimate soil microbial biomass by ATPase, whilst soil enzyme associated with the degradation rate of each individual PAH was studied. It was observed that soil pH 7.5 was most suitable for the degradation of all the PAHs. 50% degradation was observed in soil pH 7.5 within first three days of time period which is a seventh of the time taken at pH 5 and pH 6.5 (21 days). Greater fungal populations were found at low (acidic) soil pH and also at high (basic) soil pH, in comparison with neutral pH 7. Pencillium species was found to be more prevalent at acidic pH whilst Aspergillus species was found to be more prevalent at pH 7.5-8. Greatest bacterial population was observed at soil pH 7.5. Moreover, the practical application to bioremediation process that natural detoxify PAHs and different organic compounds present at various contaminated sites is at slower rates and thus requires potential understanding in degradation improvement. However, amending the favorable soil pH as a result of its effect obtained in this study will fasten the rates of PAH degradation. Since, greatest degradation rates in this study were found at soil pH 7.5 suggesting that liming to increase soil pH, may significantly increase bioremediation rates.


Google Scholar citation report
Citations : 5669

Journal of Bioremediation & Biodegradation received 5669 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
Share This Page