alexa The Persistent Neurotoxic Effects of Methamphetamine on
ISSN: 2476-2067

Toxicology: Open Access
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Persistent Neurotoxic Effects of Methamphetamine on Dopaminergic and Serotonergic Markers in Male and Female Rats

Lisa M McFadden1,2* and Paula L Vieira-Brock1

1Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA

2Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA

*Corresponding Author:
Lisa M McFadden
Division of Basic Biomedical Sciences
University of South Dakota
Vermillion, SD 57069, USA
Tel: 605-658-6346
E-mail: [email protected]

Received date: July 26, 2016; Accepted date: September 02, 2016; Published date: September 06, 2016

Citation: McFadden LM, Vieira-Brock PL (2016) The Persistent Neurotoxic Effects of Methamphetamine on Dopaminergic and Serotonergic Markers in Male and Female Rats. Toxicol Open Access 2:116. doi:10.4172/2476-2067.1000116

Copyright: © 2016 McFadden LM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Objective: Methamphetamine (METH) is a highly addictive substance abused world-wide in both males and females. Preclinical studies in male rodents suggest that large-dose exposure to METH can lead to persistent neurotoxic consequences to various brain regions. However, little research has focused on the potential role of sex in the neurotoxic consequences of METH exposure. Methods: The current study exposed male and female rats to large-doses of METH (4 injections of 7.5 mg/kg) or saline. Hyperthermia was promoted in the females exposed to METH such that similar hyperthermia occurred in males and females. Rats were sacrificed 8 d later and neurochemical changes were assessed in the striatum, hippocampus, frontal cortex and olfactory bulbs. Results: Results revealed that male and female rats exposed to METH had similar decreases in dopamine (DA) transporter (DAT) immunoreactivity in the striatum, serotonin (5-HT) content and 5-HT transporter (SERT) function in the hippocampus, and 5-HT content in the frontal cortex. However, female rats exposed to METH had greater decreases in 5-HT content in the olfactory bulbs compared to sex-matched controls while male rats exposed to METH did not significantly differ from sex-matched controls. Conclusions: These findings suggest that when similar hyperthermia is maintained between male and female rats exposed to METH, the neurotoxic effects of METH were similar in some, but not all brain regions.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords