Research Article
Utility Spectrophotometric and Chromatographic Methods for Determination of Antidepressant Drug Sulpiride in Pharmaceutical Formulations and Plasma
Mohamed Ghoneim1, Amr Lotfy Saber2,3* and Hanaa El-Desoky11Chemistry Department, Faculty of Science, Analytical & Electrochemistry Research Unit, Tanta University, Egypt
2Chemistry Department, Faculty of Science, Zagazig University, Egypt
3Chemistry Department, Faculty of Science, Umm Al-Qura University, Saudi Arabia
- *Corresponding Author:
- Amr Lotfy Saber
Chemistry Department, Faculty of Science
Umm Al-Qura University, Saudi Arabia
Tel: + 20 121430134, +966546546884
Fax: + 20 55 2306975
E-mail: alshefny@yahoo.com
Received date: February 10, 2014; Accepted date: March 09, 2014; Published date: March 11, 2014
Citation: Ghoneim M, Saber AL, El-Desoky H (2014) Utility Spectrophotometric and Chromatographic Methods for Determination of Antidepressant Drug Sulpiride in Pharmaceutical Formulations and Plasma. J Anal Bioanal Tech 5:183. doi: 10.4172/2155-9872.1000183
Copyright: © 2014 Ghoneim M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Validated spectrophotometric and chromatographic methods have been developed for determination of the antidepressant drug sulpiride (SUL) in pharmaceutical formulation and plasms. The new spectrophotometric methods were based on the formation of sulpiride yellow ion-pair complex with bromocresol green (BCG), congo red (CR) or methyl orange (MO) in Britton-Robinson universal buffer of pH 3.0, 5.0 or 2.5, respectively. The formed complexes with BCG, CR and MO were extracted with chloroform and their absorbencies were measured at 420 nm, 515 nm, and 480 nm, respectively. Beer’s law was obeyed over the concentration ranges of 2-14.0, 2-16.0, and 2-14.0 μg/ mL sulpiride with BCG, CR and MO, respectively. The molar absorpativity (ε) of the formed colored complexes with BCG, CR and MO was 4.10×104, 2.10×104 and 3.50×104 L moL-1 cm-1 and the estimated limit of detection (LOD) of sulpiride was found to be 0.044, 0.095 and 0.064 μg/mL, respectively. In the developed high performance liquid chromatographic method (HPLC), quantitation of sulpiride was carried out on C18 reversed phase column (250×4.0 mm, 5 μm) using a mobile phase of acetonitril: methanol: water: Britton-Robinson (B-R) universal buffer of pH 9 (20: 20: 40: 20, v/v/v/v) delivered at a flow rate of 0.6 mL/min with UV-detection at 225 nm. Calibration graph of bulk sulpiride was linear over the concentration range of 0.034-110 μg/mL. The described spectrophotometric and HPLC methods have been applied successfully for the analysis of sulpiride in its dosage form without interference from common excipients. Statistical comparison of their results with those obtained using a reported membrane selective electrode method showed excellent agreement and indicated no significant differences in accuracy and precision.