alexa
Reach Us +44-1477412632
Detection of Borrelia burgdorferi in a Sick Peregrine Falcon (Falco peregrinus)-A Case Report | OMICS International
ISSN: 2161-1165
Epidemiology: Open Access

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Detection of Borrelia burgdorferi in a Sick Peregrine Falcon (Falco peregrinus)-A Case Report

Markus Büker*

Small Animal Veterinary Practice, Dr. med. vet. M. Schmidt, Langenwiedenweg 77, DE-59457 Werl, Germany

Corresponding Author:
Markus Büker
Small Animal Veterinary Practice
Dr. med. vet. M. Schmidt, Langenwiedenweg 77
DE-59457 Werl, Germany
Tel: +49 2922 83709
E-mail: [email protected]

Received Date: September 28, 2013; Accepted Date: January 20, 2014; Published Date: January 23, 2014

Citation: Büker M (2014) Detection of Borrelia burgdorferi in a Sick Peregrine Falcon (Falco peregrinus) – A Case Report. Epidemiol 4: 143. doi:10.4172/2161-1165.1000143

Copyright: © 2014 Castro JG. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Epidemiology: Open Access

Abstract

Borrelia (B.) burgdorferi, the causative agent of Lyme disease, is the most important zoonotic pathogen in the northern hemisphere. This report describes a peregrine falcon (Falco peregrinus) infected with B. burgdorferi. The patient was presented with a swollen intertarsal joint, diarrhoea, and a reduced general condition. Radiographs were inconspicuous. Antibacterial treatment against the bacterium Escherichia coli found in the intestine and joint did not lead to success. The serological testing for B. burgdorferi was positive. The bird recovered well after a therapy for borreliosis similar to that in humans and mammals. In future, it should be taken into account that raptors are susceptible to B. burgdorferi.

Keywords

Lyme disease; Borrelia burgdorferi; Raptor

Introduction

The importance of Lyme borreliosis, a tick-borne disease caused by the bacterium Borrelia (B.) burgdorferi sensu lato, is constantly increasing. It is the most frequent arthropod-borne disease in the northern hemisphere today. Numerous studies about the prevalence of B. burgdorferi in ticks have been published. A review summarising 1,186 abstracts on epidemiological studies of the tick I. ricinus infected with B. burgdorferi sensu lato between 1984 and 2003 in Europe describes infection rates from 0% (Italy) to 49.1% (Slovakia). The highest infection rates were found in the countries of Central Europe [1]. The annual worldwide number of reported human cases is about 85,000 [2,3]. Lyme disease is a multisystemic infectious disease. It appears that different genospecies have certain organ tropism. The highest risk of infections is posed by infected tick nymphs, as they are easily overlooked due to their small size and wide distribution [4].

Case Report

A three-year-old female peregrine falcon (Falco peregrinus) weighing 980 g was presented with a mildly swollen left intertarsal joint. The owner also observed diarrhoea over the last five days.

The bird was kept at a weathering of about 5×2.5 metres and was trained for falconry. The diet consisted of day-old chickens and miscellaneous hunting prey animals (e.g. pheasant, rabbit, pigeon).

On clinical examination, the falcon showed a reduced general condition and a swollen left intertarsal joint. There were slight signs of diarrhoea.

Following these clinical signs, radiographs were taken (laterolateral and dorso-ventral beam) of the whole bird, which revealed a periarticular soft-tissue swelling without lysis of the articular surfaces of the left intertarsal joint. The walls of the intestinal loops were thickened and showed slight gaseous distention. Blood samples were taken from the brachial vein (V. ulnaris) for biochemical and haematological analysis. Interestingly, all parameters were in normal ranges.

The parasitological faecal examinations (direct smear and flotation process) were negative in both cases. Subsequently, bacteriological examinations of the faeces and the periarticular soft-tissue swelling were performed. Escherichia coli, a gram-negative, nonspore- forming bacillus was isolated from the cloacal swap and also from the joint in a middle-rate quantity. An antibacterial treatment was administered based on the bacterial culture and sensitivity (enrofloxacin, 10 mg/ kg p.o.). Furthermore, a supportive therapy was carried out: fluid was given via subcutaneous infusions (Stereofundin®). Meloxicam was given for analgesia. In addition to the normal food, the falcon was fed with a eupeptic emergency diet via crop gavage (Carnivore Care®).

Unfortunately, there was no significant clinical improvement during the next six days after starting the treatment.

A new blood sample was taken and tested for Borrelia burgdorferi – antibodies according to a modified indirect immunofluorescence-test described by Büker et al. [5]. The bird showed an antibody-titre of ≥ 1:256 (Figure 1). An antibiotic treatment similar to the protocol used in humans and dogs was provided (doxycycline 50 mg/kg p.o.). The falcon recovered well; after ten days, there were no signs of diarrhoea and the joint seemed to be nearly normal in size.

epidemiology-Microscopic-picture

Figure 1: Microscopic picture of a positive indirect immunofluorescence-test (630x) of a peregrine falcon (Falco peregrinus), titre 1:256.

Discussion

This case reports describes for the first time a presumably clinical borreliosis in a bird. Birds of prey respond immunologically to infections with B. burgdorferi and may therefore play a role in the transmission, maintenance, and movement of Lyme disease [5]. It seems that an appropriate treatment similar to that administered in humans and mammals can be effective against B. burgdorferi.

It is known that several bacteria, including Escherichia (E.) coli, are commonly implicated in bacterial joint diseases and also in enteritis in raptors [6]. Most are secondary pathogens; the treatment is based on bacterial culture and sensitivity, and identification and elimination of predisposing factors and concurrent disease [7]. Interestingly, it seems that the E. coli found in this case was not the cause of the clinical findings, because the concerted antibacterial treatment did not prove satisfactory. Nevertheless, it should be considered that the supportive therapy led to the physical recovery. Until now, it appeared that B. burgdorferi is asymptomatic in avian species [8]. Further research is necessary to confirm this evidence.

However, infected birds are thought to play a role in the transmission, maintenance, and long-distance movement of Lyme disease [8-10]. A large number of bird species, primarily ground foraging passerines but also sea birds, act as competent reservoirs for B. burgdorferi [8,10]. Information about the prevalence of B. burgdorferi in different bird species or in birds generally is scarce. Large-scale studies with more than one thousand examined birds have reported values of 4.4%-19% [11-13]. Two different main enzootic cycles for the widespread of B. burgdorferi by birds have been described [8]. 1. The Terrestrial Enzootic Cycle: many birds are associated with the dispersal of vector ticks and therefore the distribution of B. burgdorferi across their annual migration routes [14-18]. During these routes, migrating birds use different stopover sites where they feed and rest, and at these locations ticks may attach and later detach further along the migration routes or even in breeding and wintering areas. New foci of tick-borne diseases may become established in this way [8]. 2. The Marine Enzootic Cycle: the seabird-associated tick Ixodes uriae is the main vector in this cycle. Seabirds often live in large colonies of thousand to millions of individuals, especially during the breeding season. Therefore, ticks and also Borreliae can easily be spread [8,19]. A global transmission cycle including a transhemispheric exchange is also assumed, because the same B. garinii spirochetes were found in seabirds in the northern and southern polar regions, even on mammalfree islands [8,20]. The relatively low body temperature of seabirds may play a role in the maintenance of spirochetemia [8,19,21].

Conclusion

Birds should be considered as potential carriers of the Lyme disease; this applies particularly to predisposed persons (e.g. falconers, biologists, zookeepers, hunters, veterinarians).

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 12100
  • [From(publication date):
    February-2014 - Nov 17, 2018]
  • Breakdown by view type
  • HTML page views : 8302
  • PDF downloads : 3798
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version