Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

A Conductive Hydrogel Scaffold Reinforced with Nanofibers for Peripheral Nerve Tissue Engineering | OMICS International | Abstract
ISSN: 2469-9764

Industrial Chemistry
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

A Conductive Hydrogel Scaffold Reinforced with Nanofibers for Peripheral Nerve Tissue Engineering

*Corresponding Author:


Warning: Undefined variable $i in /efsdata/omicsonline.org/httpdocs/peer-reviewed/abstract-page.php on line 156

Warning: Undefined variable $for_cr in /efsdata/omicsonline.org/httpdocs/peer-reviewed/abstract-page.php on line 156
Copyright:
© 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

Statement of the Problem: Fabrication of conducting fiber-hydrogel composites  imicking the properties of peripheral nerve Extra Cellular Matrix (ECM) is critical for the success of nerve tissue engineering. These systems can promote the regeneration of peripheral nerve tissues which respond to electrical conduction to improve the individual deficiencies of electro spun and hydrogel scaffolds such as insignificant cellular infiltration and poor mechanical properties. 

Aim: In this study electrospinning and amino-lysis reaction were used to prepare Polylactic Acid (PLA) fragmented nanofibers. Next step was grafting conductive Polypyrrole (PPy) to the chitosan (CS) backbone. Scaffolds were obtained by dispersion of fragmented fibers into CS-PPY and gelation occurred by genipin. Scanning Electron Microscopy (SEM) images represented the formation of continues and uniform PLA nanofibers without beads. Grafting NH2 groups onto fragmented PLA nanofibers was confirmed by Fourier Transform Infrared (FTIR) spectroscopy and Energy- dispersive X-ray spectroscopy (EDX). Electrical conductivity and mechanical properties were performed in order to characterize the produced composite properties. Dispersion of nanofibers into the CS-PPY hydrogel improved mechanical properties compared to nanofiber-free scaffolds and reduced water absorption. SEM images showed that conductive composite scaffold supports PC12 cell adhesion, infiltration and proliferation. 

Findings: Therefore, it could be concluded that PLA nanofibers/CS-PPY hydrogel composites are a promising material for peripheral nerve regeneration. 

 

 

Note: This work was presented in Frontiers in Nanotechnology and Nanomaterials, which was scheduled in May 04-05, 2020 at Vienna, Austria.

Keywords

Top