alexa Antibiogram of Multidrug-Resistant Isolates of Pseudomonas aeruginosa after Biofield Treatment | OMICS International | Abstract
ISSN: 2332-0877

Journal of Infectious Diseases & Therapy
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Antibiogram of Multidrug-Resistant Isolates of Pseudomonas aeruginosa after Biofield Treatment

Trivedi MK1, Branton A1, Trivedi D1, Nayak G1, Shettigar H1, Gangwar M1 and Jana S2*
1Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA
2Trivedi Science Research Laboratory Pvt. Ltd, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Road, Madhya Pradesh, India
Corresponding Author : Jana S
Trivedi Science Research Laboratory Pvt. Ltd
Hoshangabad Road, Madhya Pradesh, India
Tel: +91-755-6660006
E-mail: [email protected]
Received: July 20, 2015 Accepted: October 09, 2015 Published: October 25, 2015
Citation: Trivedi MK, Branton A, Trivedi D, Nayak G, Shettigar H, et al. (2015) Antibiogram of Multidrug-Resistant Isolates of Pseudomonas aeruginosa after Biofield Treatment. J Infect Dis Ther 3:244. doi:10.4172/2332-0877.1000244
Copyright: © 2015 Trivedi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google

Abstract

In recent years, prevalence of multidrug resistance (MDR) in Pseudomonas aeruginosa (P. aeruginosa) has been noticed with high morbidity and mortality. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on MDR clinical lab isolates (LS) of P. aeruginosa. Five MDR clinical lab isolates (LS 22, LS 23, LS 38, LS 47, and LS 58) of P. aeruginosa were taken and divided into two groups i.e. control and biofield treated. Control and treated group were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment as compared with control group. Antimicrobial sensitivity assay showed 60% alteration in sensitivity of tested antimicrobials in MDR isolates of P. aeruginosa after biofield treatment. MIC results showed an alteration in 42.85% tested antimicrobials out of twenty eight after biofield treatment in five isolates of MDR P. aeruginosa. Biochemical study showed a 48.48% change in tested biochemical reactions out of thirty three as compared to control. A significant change in biotype numbers was reported in three clinical lab isolates of MDR P. aeruginosa out of five, after biofield treatment as compared to respective control. On the basis of changed biotype number (7302 0052) in biofield treated LS 23, new organism was identified as Citrobacter freundii as compared to control (0206 3336). A very rare biotype number (7400 4263) was found in biofield treated LS 38, as compared to control (0206 3736). Study results suggest that biofield treatment on lab isolates of MDR P. aeruginosa has significant effect on the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number. Biofield treatment might prevent the emergence of absolute resistance pattern of useful antimicrobials against MDR isolates of P. aeruginosa.

Keywords

Recommended Conferences
Share This Page
Top