alexa

GET THE APP

Differential Responses in Germination, Growth and Genes Expression of Cu/Zn- and Fe-superoxide Dismutase of Barley Under Salinity Stress | OMICS International | Abstract
ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Differential Responses in Germination, Growth and Genes Expression of Cu/Zn- and Fe-superoxide Dismutase of Barley Under Salinity Stress

Nidal Odat*

Department of Biotechnology, Al Balqa Applied University, Jordan

*Corresponding Author:
Nidal Odat
Department of Biotechnology
Al Balqa Applied University
Al-Salt 19117
Jordan
Tel: +962 5 349 1111
E-mail: [email protected]

Received date: June 24, 2017; Accepted date: July 04, 2017; Published date: July 11, 2017

Citation: Odat N (2017) Differential Responses in Germination, Growth and Genes Expression of Cu/Zn- and Fe-superoxide Dismutase of Barley Under Salinity Stress. Adv Crop Sci Tech 5: 296. doi:10.4172/2329-8863.1000296

Copyright: © 2017 Odat N. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Soil salinity limits crop productivity by affecting the growth, physiology, and expression of stress-responsive genes. To evaluate which varieties of cultivated barley from Jordan are salt tolerant, five cultivars of barley (Hordeum vulgare L.) of different varieties and morphotypes (i.e., two-and six-rowed barley) were evaluated in terms of their germination, growth traits, and gene expression of Cu/Zn- and Fe-SODs to three levels of salinity (100, 200 or 300 NaCl mM). Germination and root length were significantly affected by moderate and high levels of salinity (200 and 300 mM NaCl) mainly in the varieties Athroh, Mutah, Acsad176, Rum, and to lesser extent in Yarmouk variety, possibly as a consequence of osmotic stress and/or ionic toxicity. Analysis of quantitative real-time PCR (qRT-PCR) showed differential expressions of both Cu/Zn- and Fe-SOD genes between varieties and genotypes (i.e., the sixrowed barleys-Athroh, Acsad176, and Rum-and two-rowed barley-Yarmouk and Mutah). Moreover, both genes were up-regulated by salinity of 300 mM NaCl in the Athroh, Yarmouk, and Acsad176 varieties. Altogether, the result revealed that responses to salinity in all traits of germination, root growth, and gene expression were dependent on the variety and genotype of studied barley. Accordingly, these results have helped us to distinguish between salttolerant and salt-susceptible genotypes of cultivated barley of Jordan that shall be useful to local farmers and breeders of barley.

Keywords

Top