Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

DNA Fingerprinting of Rice Lines for Salinity Tolerance at Reproductive Stage

Iqbal SA1*, Mirza Mofazzal Islam2, Ahmed Hossain Md1 and Ananya Malaker1
1Department of Biotechnology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
2Principle Scientific Officer & Head, Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh-2202, Bangladesh
Corresponding Author : Iqbal SA
Department of Biotechnology
Bangladesh Agricultural University
Mymensingh-2202, Bangladesh
Tel: (+88)01719478408
E-mail: iqbalbge08@yahoo.com
Received March 18, 2015; Accepted May 22, 2015; Published May 25, 2015
Citation: Iqbal SA, Islam MM, Ahmed Hossain Md, Malaker A (2015) DNA Fingerprinting of Rice Lines for Salinity Tolerance at Reproductive Stage. Adv Crop Sci Tech S1:006. doi: 10.4172/2329-8863.1000S1-006
Copyright: © 2015 Iqbal SA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Salinity is the most common abiotic stresses leading to the reduction of rice yield in many rice-growing areas of the world. This study was undertaken to assess the genetic diversity among saline treatment and susceptible rice lines using molecular marker (SSR). Salinity screening was performed at reproductive stage using sustained water bath following IRRI standard protocol. Twenty two rice lines were used for molecular analysis using three SSR markers: RM1287, RM342 and RM493 to determine salinity tolerance at reproductive stage. For DNA fingerprinting of rice Varieties, DNA was extracted from leaf samples using IRRI standard protocol. Amplified microsatellite loci were analyzed for polymorphism using Polyacrylamide Gel Electrophoresis (PAGE) and the result revealed that all the primers detected polymorphism among the rice lines analyzed. Using 3 SSR markers, a total of 25 alleles were detected among the 22 rice lines. The polymorphism information content (PIC) reflects the diversity allele frequency among the lines, which ranged from 0.59 to 0.88 with an average of 0.74. RM493 was the best marker for identification of genotypes as revealed by PIC values. The results of microsatellite marker based DNA fingerprinting analysis will be useful for the selection of parents for developing salt tolerant rice variety through molecular breeding.

Top