Dual-Energy CT with Fast-kVp Switching and Its Applications in Orthopedics | OMICS International | Abstract

OMICS Journal of Radiology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Dual-Energy CT with Fast-kVp Switching and Its Applications in Orthopedics

Baojun Li*
Department of Radiology, Boston University School of Medicine, USA
Corresponding Author : Baojun Li
Department of Radiology
Boston University School of Medicine, USA
E-mail: [email protected]
Received June 20, 2013; Accepted July 22, 2013; Published August 01, 2013
Citation: Li B (2013) Dual-Energy CT with Fast-kVp Switching and Its Applications in Orthopedics. OMICS J Radiology 2:137 doi: 10.4172/2167-7964.1000137
Copyright: © 2013 Li B. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


The metal artifacts obscure or mimic pathologies and thus severely limit the diagnostic value of CT imaging in orthopedic applications. The fundamental root cause is the beam hardening effect due to the polychromatic X-ray beam. Recently, dual-energy CT with fast-kVp switching technique has been introduced that allows synthetic monochromatic energy images to be generated through material decomposition. These monochromatic energy images are not only free of metal artifacts, but also available at a broad energy range for optimal contrast at bone-tissue interface. This article summarizes the principle of this advanced CT technology with emphasis in its capability in suppressing metal implantinduced CT artifacts.