alexa Effect of 850 nm He-Ne Laser Therapy on Nerve Conductio
ISSN: 2165-7025

Journal of Novel Physiotherapies
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Effect of 850 nm He-Ne Laser Therapy on Nerve Conduction and Foot Planter Pressures Distribution of Painful Diabetic Neuropathy: A Randomized Controlled Trial

Abeer Abdelrahman Mohamed Yamany* and Kadria Bitesha

Physical Therapy, Department of Basic Science, Cairo University, Giza, Egypt

*Corresponding Author:
Abeer Abdelrahman Mohamed Yamany, PT, PhD
Assistant Professor Physical Therapy, Department of Basic Science
Cairo University, Giza, Egypt
Tel: 00201006899872
Fax: 002 37617692
E-mail: [email protected]

Received date: May 18, 2016; Accepted date: June 17, 2016; Published date: June 28, 2016

Citation: Yamany AAM, Bitesha K (2016) Effect of 850 nm He-Ne Laser Therapy on Nerve Conduction and Foot Planter Pressures Distribution of Painful Diabetic Neuropathy: A Randomized Controlled Trial. J Nov Physiother 6:300. doi:10.4172/2165-7025.1000300

Copyright: © 2016 Yamany AAM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Introduction: Diabetic neuropathy patients are at very high risk for developing foot ulcer that may lead to lower extremity amputation and threaten the patient’s life.

Objective: To evaluate the effects of scanning 850 nm He-Ne infrared laser on nerve conduction, pain intensity, and foot planter pressure distribution of painful diabetic polyneuropathy patients.

Methods: Thirty diabetic neuropathy patients with pain and reduced nerve conduction velocity were randomly divided into two groups; an experimental group (active laser group, n=15) and a control group (placebo laser group, n=15). Peak static and dynamic planter pressure were measured under heel, big toe and little toe. Sural and Peroneal nerves conduction velocity and amplitude and pain level were measured before and after treatment in both groups. The active laser group had got scanning 850 nm He–Ne infrared laser on foot planter surface and lumbosacral area with 5.7 J/cm2 for 15 min/site/session, 3 session /week for four weeks.

Results: All measured parameters improved significantly in the active laser group, while no significant changes obtained in the control group. Comparison of post treatment measurements between groups showed that sural nerve conduction velocity and amplitude, pain level, and peak static and dynamic planter pressure were significantly higher in the experimental group compared with the control group. On the other hand there was no significant difference between groups for peroneal nerve conduction velocity and amplitude.

Conclusion: 850 nm He–Ne therapy with the applied parameter and technique was an effective modality for improving nerve conduction, redistributing foot plantar pressures and relieving pain of painful diabetic polyneuropathy patients.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords