alexa Effect of Dynamic Knee Motion on Paralyzed Lower Limb Muscle Activityduring Orthotic Gait: A Test for the Effectiveness of the Motor-Assisted Knee Motion Device | Abstract
ISSN: 2165-7025

Journal of Novel Physiotherapies
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Effect of Dynamic Knee Motion on Paralyzed Lower Limb Muscle Activityduring Orthotic Gait: A Test for the Effectiveness of the Motor-Assisted Knee Motion Device

Hiromi Akahira1,2, Yuko Yamaguchi1, Kimitaka Nakazawa3, Yuji Ohta1and Noritaka Kawashima4*
1Faculty human life and environmental science, Ochanomizu University, Japan
2Products Research and Development, Research Institute, TOTO Ltd, Japan
3Graduate School of Arts and Sciences, University of Tokyo, Japan
4Department of Rehabilitation for the Movement functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Japan
Corresponding Author : Noritaka Kawashima
Department of Rehabilitation for the Movement Functions
Research Institute
National Rehabilitation Center for Persons with Disabilities
4-1, Namiki, Tokorozawa, Saitama, Japan
Tel: +81-4-2925-3100
Fax: +81-4-2995-3132
E-mail: [email protected]
Received August 29, 2012; Accepted September 22, 2012; Published September 25, 2012
Citation: Akahira H, Yamaguchi Y, Nakazawa K, Ohta Y, Kawashima N (2012) Effect of Dynamic Knee Motion on Paralyzed Lower Limb Muscle Activity during Orthotic Gait: A Test for the Effectiveness of the Motor-Assisted Knee Motion Device. J Nov Physiother S1:004. doi: 10.4172/2165-7025.S1-004
Copyright: © 2012 Akahira H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Orthotic gait in paraplegic persons is a “stiff-leg” gait, which is a gait with the knee locked in full extension position. We developed a motor-assisted knee motion device with the use of a pair of linear electric actuator attached to the knee joint of a conventional reciprocal gait orthosis (Advanced Reciprocating Gait Orthosis: ARGO). The purpose of this study was to examine the effect of dynamic knee motion on lower limb muscle electromyographic (EMG) activity during orthotic gait. Six motor complete spinal cord injured persons participated, and the subjects were asked to walk on a treadmill with two types of orthoses; Knee-ARGO and Normal-ARGO. The results demonstrated that magnitude of EMG activity in the gastrocnemius and the rectus femoris muscles was significantly increased by an accomplished dynamic knee motion. These changes might be attributed to the occurrence of an additional afferent neural input with the knee motion. The present results suggest that the assisted knee motion by generating powered device have a potential to activate the neuromuscular function in the paralyzed lower limb.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version