alexa

GET THE APP

Effect of Nitrogen Levels and Plant Population on Yield and Yield Components of Maize | OMICS International | Abstract
ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Effect of Nitrogen Levels and Plant Population on Yield and Yield Components of Maize

Shahzad Imran1, Muhammad Arif1, Arsalan Khan2*, Muhammad Ali Khan2, Wasif Shah1 and Abdul Latif1
1The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
2Agriculture Research Institute (ARI) Tarnab Peshawar, Pakistan
Corresponding Author : Arsalan khan
Agriculture Research Institute Tarnab Peshawar
Khyber PukhtoonKhwa Pakistan
Tel: +92-314-9602556
E-mail: [email protected]
Received March 15, 2015; Accepted April 11, 2015; Published April 14, 2015
Citation: Imran S, Arif M, Khan A, Khan MA, Shah W, et al. (2015) Effect of Nitrogen Levels and Plant Population on Yield and Yield Components of Maize. Adv Crop Sci Tech 3:170. doi: 10.4172/2329-8863.1000170
Copyright: © 2015 Imran S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Field experiment was conducted to study the effect of nitrogen levels and plant population on maize. Maximum number of days to tasseling (71), silking (76) and maturity (108) were recorded with the application of nitrogen at 210 kg ha-1. Higher plant height (202 cm), leaf area plant-1 (2757 cm2), leaf area index (2.16), ear length (18.0 cm), ear weight (150 g), grains ear-1 (548), thousand grain weight (258 g) and grain yield (2673 kg ha-1) were recorded with application of 210 kg N ha-1 which was statistically similar to 180 and 150 kg N ha-1. Higher biological yield (7189 kg ha-1) was recorded from 150 kg N ha-1 which was similar to 210 kg N ha-1. Plant population of 95000 plants ha-1 took more number of days to tasseling (70), silking (75) and maturity (107). Taller plants (197 cm) were measured for plant population of 95000 plants ha-1. Maximum number of leaves plant-1 (10.45) was recorded for plant population of 80000 plants ha-1. Higher leaf area plant-1 (2585 cm2) and leaf area index (2.59) were recorded for 65000 plants ha-1 which was statistically at par with 80000 plants ha-1. Higher ear length (17.71 cm), ear weight (145 g), grains ear-1 (515) and thousand grain weight (252 g) were recorded from 65000 plants ha-1 which was similar to 80000 plants ha-1. Plant population of 95000 plants ha-1 produced maximum biological yield (7276 kg ha-1) while plant population of 80000 plants ha-1 produced maximum grain yield (2551 kg ha-1) and harvest index (35.95%). It is concluded from the study that application of 150 kg N ha-1 produced maximum grain yield and plant population of 80000 plants ha-1 produced higher grain yield.

Keywords

Recommended Conferences

World Conference on Agro-Ecology and Crop Science

Manila, Philippines
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Academic Keys
  • JournalTOCs
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Publons
  • Euro Pub
Share This Page
Top