alexa Improving the Understanding of the Properties and Retention Behavior of Chemically Bonded Stationary Phases Employing Suspended-state HR/MAS NMR Spectroscopy | Abstract
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Improving the Understanding of the Properties and Retention Behavior of Chemically Bonded Stationary Phases Employing Suspended-state HR/MAS NMR Spectroscopy

Klaus Albert*, Volker Friebolin, Silvia Marten, and Helen Yeman

Institute of Organic Chemistry, University of Tuebingen, Germany

*Corresponding Author:
Klaus Albert
University of Tuebingen, Institute of Organic Chemistry
Auf der Morgenstelle 18, D-72076 Tuebingen, Germany
Tel: 07071-29-75335
Fax: 07071-29-5875
E-mail: [email protected]

Received date: November 12, 2013; Accepted date: December 12, 2013; Published date: December 16, 2013

Citation: Albert K, Friebolin V, Marten S, Yeman H (2013) Improving the Understanding of the Properties and Retention Behavior of Chemically Bonded Stationary Phases Employing Suspended-state HR/MAS NMR Spectroscopy. J Anal Bioanal Tech S12: 001. doi: 10.4172/2155-9872.S12-001

Copyright: © 2013 Albert K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Molecular recognition processes are predicted to become the basis of all advanced separation techniques. In solution and recently also in suspension ligand-receptor interactions can be studied using methods of high-resolution (HR) suspended-state NMR spectroscopy, for example by employing the saturation transfer difference (STD) NMR technique.

In this approach molecular recognition processes of (R) and (S)-flurbiprofen on different derivatized polysaccharide-based silica chiral stationary phases (CSP) typically used in high performance liquid chromatography (HPLC) have been investigated. In addition to chromatographic investigations suspended-state high-resolution/ magic angle spinning (HR/MAS) NMR measurement were performed. A separation of racemic flurbiprofen was obtained on two out of three CSP column materials under identical chromatographic conditions. Hence, we expected significant different binding affinities resulting in spatial interactions stabilizing one transient diastereomeric complex relative to the other. Due to these differences we used for screening purposes T1 relaxation time measurements and the saturation transfer difference (STD) NMR methodology to study the interaction strength between (R) and (S) enantiomers and the three CSP materials used. Thus, saturation transfer difference (STD) NMR experiments can provide valuable information for the design and implementation of novel, task-specific or tailored stationary phases.

Keywords

Recommended Conferences
Share This Page
Top