alexa Mechanical, Interfacial and Thermal Properties of Diffe
ISSN: 2168-9806

Journal of Powder Metallurgy & Mining
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Mechanical, Interfacial and Thermal Properties of Different Chemical Structures of Epoxy Resin

Pyeong-Su Shin1, Jong-Hyun Kim1, Ha-Seung Park1, Yeong-Min Baek1, Dong-Jun Kwon1, K. Lawrence DeVries2 and Joung-Man Park1,2*

1Department of Materials Engineering and Convergence Technology, Center for Creative Human Resource & Convergence Materials, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 660-701, Korea

2Department of Mechanical Engineering, The University of Utah, Salt Lake City, Utah 84112, USA

*Corresponding Author:
Park JM
Department of Materials Engineering and Convergence Technology
Center for Creative Human Resource & Convergence Materials
Research Institute for Green Energy Convergence Technology
Gyeongsang National University, Jinju 660-701, Korea
Tel: +82-55-772-1656
Fax: +82-55-772-1659
E-mail: [email protected]

Received Date: June 18, 2017; Accepted Date: June 20, 2017; Published Date: June 22, 2017

Citation: Shin PS, Kim JH, Park HS, Baek YM, Kwon DJ, et al. (2017) Mechanical, Interfacial and Thermal Properties of Different Chemical Structures of Epoxy Resin. J Powder Metall Min 6: 169. doi:10.4172/2168-9806.1000169

Copyright: © 2017 Shin PS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Optimal glass fiber/epoxy composite conditions were investigated as functions of different epoxy resin structures. Bisphenol-A and novolac type epoxies were used as composite matrices. TGA and DSC measurements were used to investigate thermal stability and glass transition temperatures of these resins. A UTM was used, at room and high temperatures, to preform tensile and compressive tests as well microdroplet pull-out tests to investigate the mechanical and interfacial properties of the resins and their composites. Novolac epoxy resin and its composites exhibited better mechanical and interfacial properties than bisphenol-A and its composites. It was also observed that the shape of microdroplet on the glass fiber was significantly narrower for the novolac resin than it was for the bisphenol-A epoxy resin.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords