alexa
Reach Us +1 218 451 2974
Neurophysiology of Nicotine Addiction | OMICS International | Abstract
ISSN: 2155-6105

Journal of Addiction Research & Therapy
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Neurophysiology of Nicotine Addiction

John A. Dani*, Daniel Jenson, John I. Broussard and Mariella De Biasi

Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, Texas 77030-3498, USA

*Corresponding Author:
Dr. Dr. John A. Dani
Department of Neuroscience
Center on Addiction, Learning, Memory
Baylor College of Medicine
Houston, Texas 77030-3498, USA
Tel: (713)-798-3710
Fax: (713)-798-3946
E-mail: [email protected]

Received January 19, 2011; Accepted April 14, 2011; Published April 20, 2011

Citation: Dani JA, Jenson D, Broussard JI, Biasi MD (2011) Neurophysiology of Nicotine Addiction. J Addict Res Ther S1:001. doi:10.4172/2155-6105.S1-001

Copyright: © 2011 Dani JA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract

Tobacco use is a major health problem, and nicotine is the main addictive component. Nicotine binds to nicotinic acetylcholine receptors (nAChR) to produce its initial effects. The nAChRs subtypes are composed of five subunits that can form in numerous combinations with varied functional and pharmacological characteristics. Diverse psychopharmacological effects contribute to the overall process of nicotine addiction, but two general neural systems are emerging as critical for the initiation and maintenance of tobacco use. Mesocorticolimbic circuitry that includes the dopaminergic pathway originating in the ventral tegmental area and projecting to the nucleus accumbens is recognized as vital for reinforcing behaviors during the initiation of nicotine addiction. In this neural system β2, a4, and a6 are the most important nAChR subunits underlying the rewarding aspects of nicotine and nicotine self-administration. On the other hand, the epithalamic habenular complex and the interpeduncular nucleus, which are connected via the fasciculus retroflexus, are critical contributors regulating nicotine dosing and withdrawal symptoms. In this case, the a5 and β4 nAChR subunits have critical roles in combination with other subunits. In both of these neural systems, particular nAChR subtypes have roles that contribute to the overall nicotine addiction process

Recommended Conferences
Share This Page
Top