alexa
Reach Us +1 218 451 2974
Preparation and Characterization of Microglia-Like Cells Derived from Rat, Mouse, and Human Bone Marrow Cells for Therapeutic Strategy of Alzheimer's Disease | Abstract
ISSN: 2155-6105

Journal of Addiction Research & Therapy
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Preparation and Characterization of Microglia-Like Cells Derived from Rat, Mouse, and Human Bone Marrow Cells for Therapeutic Strategy of Alzheimer's Disease

Kazuyuki Takata1*, Tetsuya Takada1, Hironori Tatsuda1, Tomomi Tsuruno1, Kaneyasu Nishimura2, Shun Shimohama3 and Yoshihisa Kitamura1

1Department of Neurobiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan

2Department of Biological Repair, Institute for Frontier Medical Sciences and Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA) Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.

3Department of Neurology, Sapporo Medical University, School of Medicine, S1W16, Chuo-ku, Sapporo 060-8543, Japan

*Corresponding Author:
Kazuyuki Takata, Ph.D
Department of Neurobiology
Kyoto Pharmaceutical University, Misasagi
Yamashina-ku, Kyoto 607-8414, Japan
Tel: +81-75-595-4706
Fax: +81-75-595-4796
E-mail: [email protected] ac.jp

Received October 02, 2011; Accepted December 16, 2011; Published December 21, 2011

Citation: Takata K, Takada T, Tatsuda H, Tsuruno T, Nishimura K, et al. (2011) Preparation and Characterization of Microglia-Like Cells Derived from Rat, Mouse, and Human Bone Marrow Cells for Therapeutic Strategy of Alzheimer’s Disease. J Addict Res Ther S5:001. doi: 10.4172/2155-6105.S5-001

Copyright: © 2011 Takata K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Dementia-associated neuropsychiatric symptoms, such as depression and apathy, are core features of Alzheimer’s disease (AD). Pathological hallmarks of AD include senile plaques, neurofibrillary tangles (NFTs), and neurodegeneration. Senile plaques are composed of amyloid-β (Aβ) and are surrounded by microglia, an immune effector cells in brains. Studies on responsible genes of familial AD have suggested that Aβ accumulation is a primary event that influences other AD pathologies, and the reduction of brain Aβ has been proposed as a therapeutic target for AD. On the other hand, microglial phagocytosis has been noted as an Aβ clearance system in the brain. In this context, the transplantation of microglia prepared from bone marrow cells may contribute to the clearance of Aβ in vivo brain. As a first step for this cell therapeutic strategy, we examined the preparation of microglia-like cells from mouse, rat, and human bone marrow cells by the treatment with macrophage colony-stimulating factor (M-CSF) and analyzed their phagocytic ability. In the cultivation of bone marrow cells collected from mouse, rat, and human, adherent cells on the culture dish were markedly increased by the treatment with human M-CSF. In addition, the adherent cells from mouse bone marrow cells were more sensitive to human M-CSF than that from rat bone marrow cells and more effectively expressed microglial makers, such as cluster of differentiation (CD) 11b, Iba1, and CD68. Furthermore, we demonstrated that a part of adherent cells derived from mouse and human bone marrow cells have phagocytic abilities of iron particles and Aβ peptides, and the treatment with human M-CSF significantly increased the number of phagocytic cells. Thus, we positively suggest that the microglia-like cells prepared from bone marrow cells by the treatment with human M-CSF could be a source for the cell therapeutic strategy for AD.

Keywords

Recommended Conferences
Share This Page
Top