Research Article
Some Morphological and Biochemical Changes in Gram Seedlings Under Cadmium Stress
Shreya Tiwari, Shruti Bajpai and Neerja Srivastava*
Department of Biochemistry, IBSBT, CSJM University, Kanpur, Uttar Pradesh, India
- *Corresponding Author:
- Neerja Srivastava
Department of Biochemistry, IBSBT
CSJM University, Kanpur, Uttar Pradesh, India
Tel: +919415154373
E-mail: neerjas70@gmail.com
Received Date: June 20, 2017; Accepted Date: July 24, 2017; Published Date: July 26, 2017
Citation: Tiwari S, Bajpai S, Srivastava N (2017) Some Morphological and Biochemical Changes in Gram Seedlings Under Cadmium Stress. J Bioremediat Biodegrad 8:403. doi: 10.4172/2155-6199.1000403
Copyright: © 2017 Tiwari S, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Heavy metal pollution is a very serious environmental issue throughout the world. These heavy metals do not degrade and accumulate in the environment which is very dangerous to the environmental and human health. Plant responses to heavy metal stress are the combined results of various processes like cellular transport mechanisms and activation of signal transduction pathways, which depend upon type of metal and plant species. In the present study, various morphological and biochemical changes were investigated in the Cicer arietinum grown hydroponically in different concentration of CdCl2. This study was done in order to contribute towards the better understanding of the mechanism of heavy metal stress adaptation in the gram seedlings. Marked reduction was observed in the in length of leaves, shoots and roots as well as fresh weight of gram seedlings at higher concentration of cadmium chloride compared to controls. This reduction in growth indicates metal toxicity. There is increase in protein concentration with increasing concentration of cadmium in gram seedlings. The increase of soluble proteins could results from the activation of genes for synthesis of specific proteins associated with stress that protect the vital set of cellular proteins, and the heat shock proteins which maintains membrane protein and the plant cell structures. It seems that the synthesis of specific proteins is necessary for the hardening.