Analysis Of Small Molecules In Vivo By MALDI-TOF MS | 18697
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 3463

Journal of Analytical & Bioanalytical Techniques received 3463 citations as per Google Scholar report

Journal of Analytical & Bioanalytical Techniques peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Academic Journals Database
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Euro Pub
Share This Page

Analysis of small molecules in vivo by MALDI-TOF MS

5th International Conference and Exhibition on Analytical & Bioanalytical Techniques

Zongxiu Nie

ScientificTracks Abstracts: J Anal Bioanal Tech

DOI: 10.4172/2155-9872.S1.017

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been extensively used in the analysis of large molecules, such as biomolecules and synthetic polymers, since the late 1980s. Over the years, MALDI MS has been an indispensible tool in proteomics, genomics, metabolomics, glycomics, lipidomics, MS imaging, etc. However, small molecules (m/z <1000) analysis is limited in MALDI applications because of the background interference of conventional small organic matrixes in the low mass range. The present study aims to develop novel interference-free matrixes for the analysis of small molecules in biological samples, as well as the living biosystem. Some examples, including (1) high salt-tolerant, and low background N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC), was applied as a matrix to measure the level of glucose in rat brainmicrodialysates by MALDI-TOF MS in combination with in vivo microdialysis will be shown. By monitoring the ion signals of [glucose+Cl] - in the mass spectra, a low detection limit of 10 μM for glucose in 126 mM NaCl, which is a typical component in artificial cerebrospinal fluid, without prior sample purification was achieved; (2) N-(1-naphthyl) ethylenediamine dinitrate (NEDN), was employed as a matrix to analyze small molecules such as oligosaccharides, peptides, metabolites and explosives using negative ion MALDI-TOF MS. For saccharides, the 500 amol LOD was achieved. This matrix was applies in the structural identification of oligosaccharides with post-source decay MALDI-MS; (3) 1-naphthylhydrazine hydrochloride (NHHC) has been selected as an ideal matrix to detect small molecules. This salt-tolerant matrix could be applied for the high sensitive glucose analysis with an ultra-low limit of detection of 1 amol. With NHHC, glucose in serum and the biomarker homogentisic acid in urine were successfully determined by MALDI-TOF MS in negative ion mode; (4) 2,3,4,5-tetra(3�,4�-dihydroxylphenyl)thiophene (DHPT), was designed and synthesized as the MALDI matrix for the selectively analysis of small molecular amines in positive ion mode. A wide range of small amines, such as β-agonists, amino acids, peptides, alkaloid, vitamine B and aromatic amines was analyzed and the low picomole limit-of-detection was obtained. DHPT was also applied for the qualitative analysis of the amine metabolites and quantitative determination of creatinine in urine; (5) Carbon nanodots was applied as a new MALDI matrix in both positive- and negative-ion modes. A wide range of small molecules including amino acids, peptides, fatty acids, as well as β-agonists and neutral oligosaccharides were analyzed. The glucose and uric acid in real samples were quantitatively determined by the internal standard method.

Zongxiu Nie has completed his PhD from Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences and postdoctoral studies from Institute of Atomic and Molecular Sciences, Academia Sinica and Department of Chemistry, Purdue University. He is the professor of chemistry in Institute of Chemistry, Chinese Academy of Sciences. He has published more than 42 papers in reputed journals of Mass Spectrometry.