Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar


Fabric Phase Sorptive Extraction (FPSE): A Novel Strategy In Metabolomics Sample Preparation For Disease Biomarker Discovery | 100105
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Fabric Phase Sorptive Extraction (FPSE): A novel strategy in metabolomics sample preparation for disease biomarker discovery

Joint Event on 18th International Conference on World Analytical Chemistry & Mass Spectrometry & World HPLC, Separation Techniques & Pharmacovigilance

Abuzar Kabir

Florida International University, Florida

Keynote: J Anal Bioanal Tech

DOI: 10.4172/2155-9872-C1-026

Metabolomics plays an important role in discovering potential disease biomarkers from blood plasma or serum samples. Due to the distinctive complexity of whole blood as the sample matrix, either plasma or serum are used as the primary sample in metabolomics biomarker discovery research. During the transformation of whole blood into plasma or serum followed by extraction of targeted or non-targeted metabolites using conventional sample preparation techniques including solid phase extraction (SPE) and liquid-liquid extraction (LLE), a significant portion of the analytical information disappears, resulting in negligible success in discovering potential disease biomarkers. Fabric phase sorptive extraction (FPSE), a new generation sample preparation technology, has offered a paradigm shift approach in metabolomics sample preparation. FPSE innovatively combines the benefits of solid phase extraction (SPE) (works under exhaustive extraction principle) and solid phase microextraction (works under equilibrium extraction principle) into a single sample preparation technology platform. FPSE utilizes a flexible and permeable fabric substrate, coated with high-performance sol-gel sorbents as the extraction media. This uniquely designed extraction medium is capable of extracting target analyte(s) directly from whole blood. Due to the special geometry of FPSE medium (flexible, flat and permeable) and sponge-like porous architecture of sol-gel sorbents, rapid analyte mass transfer occurs between the bulk sample and the extraction medium, resulting in a near-exhaustive extraction within a fraction of time required for other comparable sample preparation techniques. FPSE is particularly suitable for analyzing target analytes e.g., metabolites, biomarkers directly from whole blood without requiring any protein precipitation or other pre-extraction sample cleaning/manipulation. After extracting the target analyte(s) directly from the whole blood sample, FPSE media is exposed to a small volume of organic/organo-aqueous solvent for eluting the extracted analyte(s). The low viscosity of the organic solvent, the capillary force of the fabric support and sponge-like porous sol-gel network allows fast diffusion of organic solvent into the FPSE medium for quick and complete recovery of the extracted analyte(s). As a result, FPSE completely eliminates time-consuming and error-prone solvent evaporation and sample reconstitution step often considered as an integral part of solid phase extraction/liquid-liquid e work-flow. During the solvent-mediated elution/back-extraction, any protein or matrix interferents adhered to the FPSE medium precipitates out and a final centrifugation of the resulting solution prior to injecting into the analytical instrument ensures clean particle-free highly concentrated target analyte(s). Fabric phase sorptive extraction has already developed a large number of sol-gel sorbents specifically suitable for polar metabolites/biomarkers such as sol-gel polyethylene glycol, sol-gel chitosan, sol-gel Carbowax 20M, sol-gel polycaprolactone-dimethylsiloxane-caprolactone to name a few. These high-efficiency sorbents have been found equally effective for analytes with a wide range of polarity. As a consequence, searching for a new disease biomarker from whole blood in presence of numerous endogenous and exogenous interferents is no longer a wishful thinking but an achievable reality. In the current talk, some new and fascinating data on metabolomics sample preparation using FPSE and a comparison between FPSE and conventional sample preparation techniques will be presented.

Abuzar Kabir, a Research Assistant Professor at the International Forensic Research Institute (IFRI), Department of Chemistry and Biochemistry, Florida International University (FIU), Miami, Florida, USA, is a Separation Scientist and Materials Chemist. He has received his Ph.D. in analytical chemistry from University of South Florida (USF), Tampa, Florida, USA with specialization in sol-gel synthesis. He has invented 16-patented technologies in the area of chromatographic separation and analytical/bioanalytical sample preparation. He has also authored/co-authored 9 book chapters, 6 review articles, 46 research articles and 89 conference papers.