alexa Measuring Viscosity On The Nanoscale Using Fluorescent Molecular Rotors
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

5th International Conference and Exhibition on Analytical & Bioanalytical Techniques
August 18-20, 2014 DoubleTree by Hilton Beijing, China

Andrew C Benniston
ScientificTracks Abstracts: J Anal Bioanal Tech
DOI: 10.4172/2155-9872.S1.017
Abstract
Molecular environment-sensitive probes offer the opportunity to chart physical and structural alterations on the nanoscale. Many areas of science have benefited from the unique information afforded by probes located within inaccessible spaces, which could not be collected by conventional techniques. Response to pH, polarity, temperature, extraneous metal ions, poisons and biomolecules are common place. Luminescence has certainly been one of the most popular methods used for readout purposes, since it is highly sensitive and non-intrusive when employed for biological applications. Temporal profiling is also possible with luminescence, so that timescales (e.g., picoseconds to milliseconds) for molecular events is achievable. There are a wealth of fluorescence reporters to date, some of which are tailor-made for specific purposes such as reactive oxygen species (ROS) detection, lipid mobility monitoring, protein sequencing and DNA/RNA recognition. Certainly one of the most versatile classes of fluorescent reporters to date is based on the borondipyrromethene (Bodipy) group. Generally, the fully alkylated molecule (BD) is strongly fluorescent in fluid solution at room temperature. It is very noticeable that fluorescence is much lower for certain fully non-alkylated versions (ROT), especially in non-viscous solvents. There is an enhancement (ca. 4 fold) in fluorescence quantum yield as the solvent viscosity increases by around 10 cP. The solvent viscosity effect is traced to reduction in the non-radiative decay process and the retardation in rotation of the meso aryl group with the increase in solvent viscosity. As the aryl group rotates it distorts slightly the pyrromethene backbone, which in turn affects the rate for non-radiative decay. The one problem with the first prototype of so-called Bodipy molecular rotor was the low starting point fluorescence output. We were especially interested to see if the original signal could be enhanced, with no detrimental effect on the overall fluorescence viscosity response. This talk will discuss our current progress in producing rheological probes (ROFRET) using intramolecular energy transfer to try and enhance the output signal.
Biography

Andrew C Benniston completed his PhD from Warwick University in 1990 and postdoctoral studies at the Universite Louis Pasteur (Strasbourg) and the University of Texas at Austin. He is Professor of Photonic Energy Sciences at Newcastle University. He has published more than 130 papers in major journals and is currently the Editor-In Chief for the Journal of Analytical & Bioanalytical Techniques.

image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version