A Single Bio-based Catalyst for Bio-fuel and Bio-diesel | OMICS International | Abstract
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Single Bio-based Catalyst for Bio-fuel and Bio-diesel

Jahangir Emrani1* and Abolghasem Shahbazi2

1Department of Chemistry, North Carolina A&T State University, Greensboro, NC 27411, USA

2Department of Biological Engineering, North Carolina A&T State University, Greensboro, NC 27411, USA

Corresponding Author:
Jahangir Emrani
Department of Chemistry
North Carolina A&T State University
Greensboro, NC 2741, USA
E-mail: [email protected]

Received date: November 19, 2011; Accepted date: January 11, 2012; Published date: January 13, 2012

Citation: Emrani J, Shahbazi A (2012) A Single Bio-based Catalyst for Bio-fuel and Bio-diesel. J Biotechnol Biomaterial 2:124. doi:10.4172/2155-952X.1000124

Copyright: © 2012 Emrani J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Current homogeneous catalysts used for commercial biodiesel synthesis are toxic and flammable. For Feedstock, their reaction requires refined oil which is a human food and expensive. In addition, due to contamination, the main byproduct of their reaction, glycerol is not usable for sale as a high value product and is land filled or burned as waste. Furthermore, the use of these catalysts in conversion of low cost feed-stocks such as waste oil and greases is not economical because their reactions produce soaps and clean up of the soap imposes additional processing cost to the biodiesel synthesis process. On the other hand, heterogeneous catalysts under development for biodiesel synthesis are either derived from non-renewable resources, or have problems with toxicity or stability. The solid heterogeneous bio-based catalysts are based on renewable resources, non-toxic, stable, effective, and low cost and are expected to work well for conversion of low cost feed-stocks such as waste oil and grease such as yellow, brown and black grease. In addition to catalyzing biodiesel synthesis, biobased catalysts can convert cellulosic agricultural waste to biofuel via saccarification followed by fermentation. Due to the abundance of cellulosic biomass in the nature, this reaction has great significance as it will affect the availability of not only biofuel from the fermentation of glucose, but also the availability of all organic chemicals and even hydrogen fuel from biomass. Because the catalytic active site in these catalysts are chemically bound, in contrast to other similar catalysts such as naphthalene sulfonic acid, the catalytic active sites of biobased catalysts will not break down, or leach. As a result, both the biodiesel and the glycerol by product will be free of catalyst contaminants. This allows the biodiesel to be safely burned and the glycerol byproduct to be sold as value-added commodity for pharmaceutical and cosmetic uses.

Recommended Conferences

2nd International Conference on Biotechnology and Healthcare

Auckland, New Zealand
Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page