Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar


Are there Technical/Clinical Tools to Improve the Present Vascular Access Outcome in Haemodialysis Patients? | OMICS International | Abstract
ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Are there Technical/Clinical Tools to Improve the Present Vascular Access Outcome in Haemodialysis Patients?

Ezio Movilli*

Division of Nephrology, Spedali Civili and University of Brescia, Italy

Corresponding Author:
Ezio Movilli
Division of Nephrology
Spedali Civili and University of Brescia, Italy
Tel: 237-7718 3510

Received date: October 31, 2011; Accepted date: November 18, 2011; Published date: November 20, 2011

Citation: Movilli E (2011) Are there Technical/Clinical Tools to Improve the Present Vascular Access Outcome in Haemodialysis Patients? J Biotechnol Biomaterial 1:115. doi:10.4172/2155-952X.1000115

Copyright: © 2011 Movilli E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


When native vein and artery are not available due to previous harvest, anatomical limitations, or disease progression, synthetic materials such as Dacron or ePTFE have been used with varying degrees of success. Synthetic graft materials are used with great success in larger diameter applications such as aortic or iliac reconstruction, but they have demonstrated unacceptably poor performance in most small diameter applications (below 6 mm inside diameter). The poor efficacy of small diameter synthetics is linked to short-term thrombosis, increased rate of infection, chronic inflammatory responses to the foreign materials, and compliance mismatch between the native tissue and the prosthetic material. These problems are well illustrated in A-V access grafts, where the intervention rates for synthetic grafts are three-fold higher than for native vein fistulas [1]. Attempts to improve the durability of prosthetic grafts began in the 1970s with the concept of seeding the luminal surface of the graft, considered to be thrombogenic, with endothelial cells [2]. The major technical feat overcome by extensive work in the 1980s and 1990s centered on preventing the cells from being dislodged by luminal blood flow on implantation of the graft. Strategies to overcome this problem include precoating the graft with various adhesives, pressure sodding, modification of the graft surface with RGD moieties, prolonged culture of the graft, and flow conditioning. The field of Cardiovascular Tissue Engineering has attempted to produce a clinically viable synthetic conduit by using a variety of in vitro approaches that typically combine living cells seeded into reconstituted scaffolds to create living tissue engineered blood vessels (TEBVs.

Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Recommended Journals
Share This Page